Given a black box (oracle) for the evaluation of a univariate polynomial p(x) of a degree d, we seek its zeros, that is, the roots of the equation p(x)=0. At FOCS 2016 Louis and Vempala approximated a largest zero of such a real-rooted polynomial within $1/2^b$, by performing at NR cost of the evaluation of Newton's ratio p(x)/p'(x) at O(b\log(d)) points x. They readily extended this root-finder to record fast approximation of a largest eigenvalue of a symmetric matrix under the Boolean complexity model. We apply distinct approach and techniques to obtain more general results at the same computational cost.
Blind source separation (BSS) aims to recover an unobserved signal $S$ from its mixture $X=f(S)$ under the condition that the effecting transformation $f$ is invertible but unknown. As this is a basic problem with many practical applications, a fundamental issue is to understand how the solutions to this problem behave when their supporting statistical prior assumptions are violated. In the classical context of linear mixtures, we present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$. Modelling $S$ as a multidimensional stochastic process, we introduce an informative topology on the space of possible causes underlying a mixture $X$, and show that the behaviour of a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees with respect to this topology. This allows for a flexible and convenient quantification of general model uncertainty scenarios and amounts to the first comprehensive robustness framework for BSS. Our approach is entirely constructive, and we demonstrate its utility with novel theoretical guarantees for a number of statistical applications.
The flocking motion control is concerned with managing the possible conflicts between local and team objectives of multi-agent systems. The overall control process guides the agents while monitoring the flock-cohesiveness and localization. The underlying mechanisms may degrade due to overlooking the unmodeled uncertainties associated with the flock dynamics and formation. On another side, the efficiencies of the various control designs rely on how quickly they can adapt to different dynamic situations in real-time. An online model-free policy iteration mechanism is developed here to guide a flock of agents to follow an independent command generator over a time-varying graph topology. The strength of connectivity between any two agents or the graph edge weight is decided using a position adjacency dependent function. An online recursive least squares approach is adopted to tune the guidance strategies without knowing the dynamics of the agents or those of the command generator. It is compared with another reinforcement learning approach from the literature which is based on a value iteration technique. The simulation results of the policy iteration mechanism revealed fast learning and convergence behaviors with less computational effort.
In this short note, we show that the higher order derivatives of the adjugate matrix $\mbox{Adj}(z-A)$, are related to the nilpotent matrices and projections in the Jordan decomposition of the matrix $A$. These relations appear as a factorization of the derivative of the adjugate matrix as a product of factors related to the eigenvalues, nilpotent matrices and projectors. The novel relations are obtained using the Riesz projector and functional calculus. The results presented here can be considered a generalization of the Thompson and McEnteggert theorem that relates the adjugate matrix with the orthogonal projection on the eigenspace of simple eigenvalues for symmetric matrices. They can also be viewed as a complement to some previous results by B. Parisse, M. Vaughan that related derivatives of the adjugate matrix with the invariant subspaces associated with an eigenvalue. Our results can also be interpreted as a general eigenvector-eigenvalue identity. Many previous works have dealt with relations between the projectors on the eigenspaces and derivatives of the adjugate matrix with the characteristic spaces but it seems there is no explicit mention in the literature of the factorization of the higher-order derivatives of the adjugate matrix as a product involving nilpotent and projector matrices that appears in the Jordan decomposition theorem.
The light and soft characteristics of Buoyancy Assisted Lightweight Legged Unit (BALLU) robots have a great potential to provide intrinsically safe interactions in environments involving humans, unlike many heavy and rigid robots. However, their unique and sensitive dynamics impose challenges to obtaining robust control policies in the real world. In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification and our novel residual physics learning method, Environment Mimic (EnvMimic). First, we model the nonlinear dynamics of the actuators by collecting hardware data and optimizing the simulation parameters. Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy to match real-world trajectories, which enables us to model residual physics with greater fidelity. We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones. We finally demonstrate that the improved simulator allows us to learn better walking and turning policies that can be successfully deployed on the hardware of BALLU.
The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust PCA, and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank $r$ is equal to the true rank $r^*$ of the unknown ground truth (the exact parametrized case), as well as the scenario where $r$ is greater than $r^*$ (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the non-convex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the non-convex problem and the ground truth under the assumption that the RIP constant is smaller than $1/(1+\sqrt{r^*/r})$. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime.
Following the breakthrough work of Tardos in the bit-complexity model, Vavasis and Ye gave the first exact algorithm for linear programming in the real model of computation with running time depending only on the constraint matrix. For solving a linear program (LP) $\max\, c^\top x,\: Ax = b,\: x \geq 0,\: A \in \mathbb{R}^{m \times n}$, Vavasis and Ye developed a primal-dual interior point method using a 'layered least squares' (LLS) step, and showed that $O(n^{3.5} \log (\bar{\chi}_A+n))$ iterations suffice to solve (LP) exactly, where $\bar{\chi}_A$ is a condition measure controlling the size of solutions to linear systems related to $A$. Monteiro and Tsuchiya, noting that the central path is invariant under rescalings of the columns of $A$ and $c$, asked whether there exists an LP algorithm depending instead on the measure $\bar{\chi}^*_A$, defined as the minimum $\bar{\chi}_{AD}$ value achievable by a column rescaling $AD$ of $A$, and gave strong evidence that this should be the case. We resolve this open question affirmatively. Our first main contribution is an $O(m^2 n^2 + n^3)$ time algorithm which works on the linear matroid of $A$ to compute a nearly optimal diagonal rescaling $D$ satisfying $\bar{\chi}_{AD} \leq n(\bar{\chi}^*)^3$. This algorithm also allows us to approximate the value of $\bar{\chi}_A$ up to a factor $n (\bar{\chi}^*)^2$. As our second main contribution, we develop a scaling invariant LLS algorithm, together with a refined potential function based analysis for LLS algorithms in general. With this analysis, we derive an improved $O(n^{2.5} \log n\log (\bar{\chi}^*_A+n))$ iteration bound for optimally solving (LP) using our algorithm. The same argument also yields a factor $n/\log n$ improvement on the iteration complexity bound of the original Vavasis-Ye algorithm.
Very recently, the first mathematical runtime analyses for the NSGA-II, the most common multi-objective evolutionary algorithm, have been conducted. Continuing this research direction, we prove that the NSGA-II optimizes the OneJumpZeroJump benchmark asymptotically faster when crossover is employed. Together with a parallel independent work by Dang, Opris, Salehi, and Sudholt, this is the first time such an advantage of crossover is proven for the NSGA-II. Our arguments can be transferred to single-objective optimization. They then prove that crossover can speed up the $(\mu+1)$ genetic algorithm in a different way and more pronounced than known before. Our experiments confirm the added value of crossover and show that the observed advantages are even larger than what our proofs can guarantee.
The Sinc approximation applied to double-exponentially decaying functions is referred to as the DE-Sinc approximation. This approximation has notably been utilized for many applications because of its high efficiency. The Sinc approximation's mesh size and truncation numbers should be optimally selected to avail its full performance. However, the usual formula has only been ``near-optimally'' selected because the optimal formula between the two cannot be expressed in terms of elementary functions. In this study, we propose two improved formulas. The first one is based on the concept by an earlier research that produced an improved selection formula for the double-exponential formula. The formula performed better than the usual one, but was still not optimal. As a second formula, we introduce a new parameter to propose a truly optimal formula between the two. We give explicit error bounds for both formulas. Numerical comparisons show that the first formula gives a better error bound than the standard formula, and the second formula gives a far better error bound than both the standard and first formulas.
The determinant lower bound of Lovasz, Spencer, and Vesztergombi [European Journal of Combinatorics, 1986] is a powerful general way to prove lower bounds on the hereditary discrepancy of a set system. In their paper, Lovasz, Spencer, and Vesztergombi asked if hereditary discrepancy can also be bounded from above by a function of the hereditary discrepancy. This was answered in the negative by Hoffman, and the largest known multiplicative gap between the two quantities for a set system of $m$ substes of a universe of size $n$ is on the order of $\max\{\log n, \sqrt{\log m}\}$. On the other hand, building on work of Matou\v{s}ek [Proceedings of the AMS, 2013], recently Jiang and Reis [SOSA, 2022] showed that this gap is always bounded up to constants by $\sqrt{\log(m)\log(n)}$. This is tight when $m$ is polynomial in $n$, but leaves open what happens for large $m$. We show that the bound of Jiang and Reis is tight for nearly the entire range of $m$. Our proof relies on a technique of amplifying discrepancy via taking Kronecker products, and on discrepancy lower bounds for a set system derived from the discrete Haar basis.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.