亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this short note, we show that the higher order derivatives of the adjugate matrix $\mbox{Adj}(z-A)$, are related to the nilpotent matrices and projections in the Jordan decomposition of the matrix $A$. These relations appear as a factorization of the derivative of the adjugate matrix as a product of factors related to the eigenvalues, nilpotent matrices and projectors. The novel relations are obtained using the Riesz projector and functional calculus. The results presented here can be considered a generalization of the Thompson and McEnteggert theorem that relates the adjugate matrix with the orthogonal projection on the eigenspace of simple eigenvalues for symmetric matrices. They can also be viewed as a complement to some previous results by B. Parisse, M. Vaughan that related derivatives of the adjugate matrix with the invariant subspaces associated with an eigenvalue. Our results can also be interpreted as a general eigenvector-eigenvalue identity. Many previous works have dealt with relations between the projectors on the eigenspaces and derivatives of the adjugate matrix with the characteristic spaces but it seems there is no explicit mention in the literature of the factorization of the higher-order derivatives of the adjugate matrix as a product involving nilpotent and projector matrices that appears in the Jordan decomposition theorem.

相關內容

Reinforcement learning on high-dimensional and complex problems relies on abstraction for improved efficiency and generalization. In this paper, we study abstraction in the continuous-control setting, and extend the definition of MDP homomorphisms to the setting of continuous state and action spaces. We derive a policy gradient theorem on the abstract MDP for both stochastic and deterministic policies. Our policy gradient results allow for leveraging approximate symmetries of the environment for policy optimization. Based on these theorems, we propose a family of actor-critic algorithms that are able to learn the policy and the MDP homomorphism map simultaneously, using the lax bisimulation metric. Finally, we introduce a series of environments with continuous symmetries to further demonstrate the ability of our algorithm for action abstraction in the presence of such symmetries. We demonstrate the effectiveness of our method on our environments, as well as on challenging visual control tasks from the DeepMind Control Suite. Our method's ability to utilize MDP homomorphisms for representation learning leads to improved performance, and the visualizations of the latent space clearly demonstrate the structure of the learned abstraction.

A code of length $n$ is said to be (combinatorially) $(\rho,L)$-list decodable if the Hamming ball of radius $\rho n$ around any vector in the ambient space does not contain more than $L$ codewords. We study a recently introduced class of higher order MDS codes, which are closely related (via duality) to codes that achieve a generalized Singleton bound for list decodability. For some $\ell\geq 1$, higher order MDS codes of length $n$, dimension $k$, and order $\ell$ are denoted as $(n,k)$-MDS($\ell$) codes. We present a number of results on the structure of these codes, identifying the `extend-ability' of their parameters in various scenarios. Specifically, for some parameter regimes, we identify conditions under which $(n_1,k_1)$-MDS($\ell_1$) codes can be obtained from $(n_2,k_2)$-MDS($\ell_2$) codes, via various techniques. We believe that these results will aid in efficient constructions of higher order MDS codes. We also obtain a new field size upper bound for the existence of such codes, which arguably improves over the best known existing bound, in some parameter regimes.

Consider words of length $n$. The set of all periods of a word of length $n$ is a subset of $\{0,1,2,\ldots,n-1\}$. However, any subset of $\{0,1,2,\ldots,n-1\}$ is not necessarily a valid set of periods. In a seminal paper in 1981, Guibas and Odlyzko have proposed to encode the set of periods of a word into an $n$ long binary string, called an autocorrelation, where a one at position $i$ denotes the period $i$. They considered the question of recognizing a valid period set, and also studied the number of valid period sets for length $n$, denoted $\kappa_n$. They conjectured that $\ln(\kappa_n)$ asymptotically converges to a constant times $\ln^2(n)$. If improved lower bounds for $\ln(\kappa_n)/\ln^2(n)$ were proposed in 2001, the question of a tight upper bound has remained opened since Guibas and Odlyzko's paper. Here, we exhibit an upper bound for this fraction, which implies its convergence and closes this long standing conjecture. Moreover, we extend our result to find similar bounds for the number of correlations: a generalization of autocorrelations which encodes the overlaps between two strings.

Guarded Kleene Algebra with Tests (GKAT) is a fragment of Kleene Algebra with Tests (KAT) that was recently introduced to reason efficiently about imperative programs. In contrast to KAT, GKAT does not have an algebraic axiomatization, but relies on an analogue of Salomaa's axiomatization of Kleene Algebra. In this paper, we present an algebraic axiomatization and prove two completeness results for a large fragment of GKAT consisting of skip-free programs.

According to Aistleitner and Weimar, there exist two-dimensional (double) infinite matrices whose star-discrepancy $D_N^{*s}$ of the first $N$ rows and $s$ columns, interpreted as $N$ points in $[0,1]^s$, satisfies an inequality of the form $$D_N^{*s} \leq \sqrt{\alpha} \sqrt{A+B\frac{\ln(\log_2(N))}{s}}\sqrt{\frac{s}{N}}$$ with $\alpha = \zeta^{-1}(2) \approx 1.73, A=1165$ and $B=178$. These matrices are obtained by using i.i.d sequences, and the parameters $s$ and $N$ refer to the dimension and the sample size respectively. In this paper, we improve their result in two directions: First, we change the character of the equation so that the constant $A$ gets replaced by a value $A_s$ dependent on the dimension $s$ such that for $s>1$ we have $A_s<A$. Second, we generalize the result to the case of the (extreme) discrepancy. The paper is complemented by a section where we show numerical results for the dependence of the parameter $A_s$ on $s$.

Information-theoretic quantities reveal dependencies among variables in the structure of joint, marginal, and conditional entropies, but leave some fundamentally different systems indistinguishable. Furthermore, there is no consensus on how to construct and interpret a higher-order generalisation of mutual information (MI). In this manuscript, we show that a recently proposed model-free definition of higher-order interactions amongst binary variables (MFIs), like mutual information, is a M\"obius inversion on a Boolean algebra, but of surprisal instead of entropy. This gives an information-theoretic interpretation to the MFIs, and by extension to Ising interactions. We study the dual objects to MI and MFIs on the order-reversed lattice, and find that dual MI is related to the previously studied differential mutual information, while dual interactions (outeractions) are interactions with respect to a different background state. Unlike mutual information, in- and outeractions uniquely identify all six 2-input logic gates, the dy- and triadic distributions, and different causal dynamics that are identical in terms of their Shannon-information content.

We investigate random matrices whose entries are obtained by applying a nonlinear kernel function to pairwise inner products between $n$ independent data vectors, drawn uniformly from the unit sphere in $\mathbb{R}^d$. This study is motivated by applications in machine learning and statistics, where these kernel random matrices and their spectral properties play significant roles. We establish the weak limit of the empirical spectral distribution of these matrices in a polynomial scaling regime, where $d, n \to \infty$ such that $n / d^\ell \to \kappa$, for some fixed $\ell \in \mathbb{N}$ and $\kappa \in (0, \infty)$. Our findings generalize an earlier result by Cheng and Singer, who examined the same model in the linear scaling regime (with $\ell = 1$). Our work reveals an equivalence principle: the spectrum of the random kernel matrix is asymptotically equivalent to that of a simpler matrix model, constructed as a linear combination of a (shifted) Wishart matrix and an independent matrix sampled from the Gaussian orthogonal ensemble. The aspect ratio of the Wishart matrix and the coefficients of the linear combination are determined by $\ell$ and the expansion of the kernel function in the orthogonal Hermite polynomial basis. Consequently, the limiting spectrum of the random kernel matrix can be characterized as the free additive convolution between a Marchenko-Pastur law and a semicircle law. We also extend our results to cases with data vectors sampled from isotropic Gaussian distributions instead of spherical distributions.

We present a new approach for computing compact sketches that can be used to approximate the inner product between pairs of high-dimensional vectors. Based on the Weighted MinHash algorithm, our approach admits strong accuracy guarantees that improve on the guarantees of popular linear sketching approaches for inner product estimation, such as CountSketch and Johnson-Lindenstrauss projection. Specifically, while our method admits guarantees that exactly match linear sketching for dense vectors, it yields significantly lower error for sparse vectors with limited overlap between non-zero entries. Such vectors arise in many applications involving sparse data. They are also important in increasingly popular dataset search applications, where inner product sketches are used to estimate data covariance, conditional means, and other quantities involving columns in unjoined tables. We complement our theoretical results by showing that our approach empirically outperforms existing linear sketches and unweighted hashing-based sketches for sparse vectors.

The entropy production rate is a central quantity in non-equilibrium statistical physics, scoring how far a stochastic process is from being time-reversible. In this paper, we compute the entropy production of diffusion processes at non-equilibrium steady-state under the condition that the time-reversal of the diffusion remains a diffusion. We start by characterising the entropy production of both discrete and continuous-time Markov processes. We investigate the time-reversal of time-homogeneous stationary diffusions and recall the most general conditions for the reversibility of the diffusion property, which includes hypoelliptic and degenerate diffusions, and locally Lipschitz vector fields. We decompose the drift into its time-reversible and irreversible parts, or equivalently, the generator into symmetric and antisymmetric operators. We show the equivalence with a decomposition of the backward Kolmogorov equation considered in hypocoercivity theory, and a decomposition of the Fokker-Planck equation in GENERIC form. The main result shows that when the time-irreversible part of the drift is in the range of the volatility matrix (almost everywhere) the forward and time-reversed path space measures of the process are mutually equivalent, and evaluates the entropy production. When this does not hold, the measures are mutually singular and the entropy production is infinite. We verify these results using exact numerical simulations of linear diffusions. We illustrate the discrepancy between the entropy production of non-linear diffusions and their numerical simulations in several examples and illustrate how the entropy production can be used for accurate numerical simulation. Finally, we discuss the relationship between time-irreversibility and sampling efficiency, and how we can modify the definition of entropy production to score how far a process is from being generalised reversible.

We present a new algorithm by which the Adomian polynomials can be determined for scalar-valued nonlinear polynomial functional in a Hilbert space. This algorithm calculates the Adomian polynomials without the complicated operations such as parametrization, expansion, regrouping, differentiation, etc. The algorithm involves only some matrix operations. Because of the simplicity in the mathematical operations, the new algorithm is faster and more efficient than the other algorithms previously reported in the literature. We also implement the algorithm in the MATHEMATICA code. The computing speed and efficiency of the new algorithm are compared with some other algorithms in the one-dimensional case.

北京阿比特科技有限公司