亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new approach for computing compact sketches that can be used to approximate the inner product between pairs of high-dimensional vectors. Based on the Weighted MinHash algorithm, our approach admits strong accuracy guarantees that improve on the guarantees of popular linear sketching approaches for inner product estimation, such as CountSketch and Johnson-Lindenstrauss projection. Specifically, while our method admits guarantees that exactly match linear sketching for dense vectors, it yields significantly lower error for sparse vectors with limited overlap between non-zero entries. Such vectors arise in many applications involving sparse data. They are also important in increasingly popular dataset search applications, where inner product sketches are used to estimate data covariance, conditional means, and other quantities involving columns in unjoined tables. We complement our theoretical results by showing that our approach empirically outperforms existing linear sketches and unweighted hashing-based sketches for sparse vectors.

相關內容

Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider the contextual bandit with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis that heavily relies on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bounds. We then generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds either nearly match the performance lower bound or improve the existing methods for all the corruption levels and in both known and unknown $\zeta$ cases.

A growing line of work shows how learned predictions can be used to break through worst-case barriers to improve the running time of an algorithm. However, incorporating predictions into data structures with strong theoretical guarantees remains underdeveloped. This paper takes a step in this direction by showing that predictions can be leveraged in the fundamental online list labeling problem. In the problem, n items arrive over time and must be stored in sorted order in an array of size Theta(n). The array slot of an element is its label and the goal is to maintain sorted order while minimizing the total number of elements moved (i.e., relabeled). We design a new list labeling data structure and bound its performance in two models. In the worst-case learning-augmented model, we give guarantees in terms of the error in the predictions. Our data structure provides strong guarantees: it is optimal for any prediction error and guarantees the best-known worst-case bound even when the predictions are entirely erroneous. We also consider a stochastic error model and bound the performance in terms of the expectation and variance of the error. Finally, the theoretical results are demonstrated empirically. In particular, we show that our data structure has strong performance on real temporal data sets where predictions are constructed from elements that arrived in the past, as is typically done in a practical use case.

There is increasing appetite for analysing populations of network data due to the fast-growing body of applications demanding such methods. While methods exist to provide readily interpretable summaries of heterogeneous network populations, these are often descriptive or ad hoc, lacking any formal justification. In contrast, principled analysis methods often provide results difficult to relate back to the applied problem of interest. Motivated by two complementary applied examples, we develop a Bayesian framework to appropriately model complex heterogeneous network populations, whilst also allowing analysts to gain insights from the data, and make inferences most relevant to their needs. The first application involves a study in Computer Science measuring human movements across a University. The second analyses data from Neuroscience investigating relationships between different regions of the brain. While both applications entail analysis of a heterogeneous population of networks, network sizes vary considerably. We focus on the problem of clustering the elements of a network population, where each cluster is characterised by a network representative. We take advantage of the Bayesian machinery to simultaneously infer the cluster membership, the representatives, and the community structure of the representatives, thus allowing intuitive inferences to be made. The implementation of our method on the human movement study reveals interesting movement patterns of individuals in clusters, readily characterised by their network representative. For the brain networks application, our model reveals a cluster of individuals with different network properties of particular interest in Neuroscience. The performance of our method is additionally validated in extensive simulation studies.

Cuckoo hashing is a powerful primitive that enables storing items using small space with efficient querying. At a high level, cuckoo hashing maps $n$ items into $b$ entries storing at most $\ell$ items such that each item is placed into one of $k$ randomly chosen entries. Additionally, there is an overflow stash that can store at most $s$ items. Many cryptographic primitives rely upon cuckoo hashing to privately embed and query data where it is integral to ensure small failure probability when constructing cuckoo hashing tables as it directly relates to the privacy guarantees. As our main result, we present a more query-efficient cuckoo hashing construction using more hash functions. For construction failure probability $\epsilon$, the query overhead of our scheme is $O(1 + \sqrt{\log(1/\epsilon)/\log n})$. Our scheme has quadratically smaller query overhead than prior works for any target failure probability $\epsilon$. We also prove lower bounds matching our construction. Our improvements come from a new understanding of the locality of cuckoo hashing failures for small sets of items. We also initiate the study of robust cuckoo hashing where the input set may be chosen with knowledge of the hash functions. We present a cuckoo hashing scheme using more hash functions with query overhead $\tilde{O}(\log \lambda)$ that is robust against poly$(\lambda)$ adversaries. Furthermore, we present lower bounds showing that this construction is tight and that extending previous approaches of large stashes or entries cannot obtain robustness except with $\Omega(n)$ query overhead. As applications of our results, we obtain improved constructions for batch codes and PIR. In particular, we present the most efficient explicit batch code and blackbox reduction from single-query PIR to batch PIR.

We present a finite element discretisation to model the interaction between a poroelastic structure and an elastic medium. The consolidation problem considers fully coupled deformations across an interface, ensuring continuity of displacement and total traction, as well as no-flux for the fluid phase. Our formulation of the poroelasticity equations incorporates displacement, fluid pressure, and total pressure, while the elasticity equations adopt a displacement-pressure formulation. Notably, the transmission conditions at the interface are enforced without the need for Lagrange multipliers. We demonstrate the stability and convergence of the divergence-conforming finite element method across various polynomial degrees. The a priori error bounds remain robust, even when considering large variations in intricate model parameters such as Lam\'e constants, permeability, and storativity coefficient. To enhance computational efficiency and reliability, we develop residual-based a posteriori error estimators that are independent of the aforementioned coefficients. Additionally, we devise parameter-robust and optimal block diagonal preconditioners. Through numerical examples, including adaptive scenarios, we illustrate the scheme's properties such as convergence and parameter robustness.

In this paper, we are concerned with efficiently solving the sequences of regularized linear least squares problems associated with employing Tikhonov-type regularization with regularization operators designed to enforce edge recovery. An optimal regularization parameter, which balances the fidelity to the data with the edge-enforcing constraint term, is typically not known a priori. This adds to the total number of regularized linear least squares problems that must be solved before the final image can be recovered. Therefore, in this paper, we determine effective multigrid preconditioners for these sequences of systems. We focus our approach on the sequences that arise as a result of the edge-preserving method introduced in [6], where we can exploit an interpretation of the regularization term as a diffusion operator; however, our methods are also applicable in other edge-preserving settings, such as iteratively reweighted least squares problems. Particular attention is paid to the selection of components of the multigrid preconditioner in order to achieve robustness for different ranges of the regularization parameter value. In addition, we present a parameter culling approach that, when used with the L-curve heuristic, reduces the total number of solves required. We demonstrate our preconditioning and parameter culling routines on examples in computed tomography and image deblurring.

In general, high order splitting methods suffer from an order reduction phenomena when applied to the time integration of partial differential equations with non-periodic boundary conditions. In the last decade, there were introduced several modifications to prevent the second order Strang Splitting method from such a phenomena. In this article, inspired by these recent corrector techniques, we introduce a splitting method of order three for a class of semilinear parabolic problems that avoids order reduction in the context of non-periodic boundary conditions. We give a proof for the third order convergence of the method in a simplified linear setting and confirm the result by numerical experiments. Moreover, we show numerically that the result also persists with a nonlinear source term.

Generative adversarial networks constitute a powerful approach to generative modeling. While generated samples often are indistinguishable from real data, there is no guarantee that they will follow the true data distribution. In this work, we propose a method to ensure that the distributions of certain generated data statistics coincide with the respective distributions of the real data. In order to achieve this, we add a Kullback-Leibler term to the generator loss function: the KL divergence is taken between the true distributions as represented by a conditional energy-based model, and the corresponding generated distributions obtained from minibatch values at each iteration. We evaluate the method on a synthetic dataset and two real-world datasets and demonstrate improved performance of our method.

Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

北京阿比特科技有限公司