We present a new algorithm by which the Adomian polynomials can be determined for scalar-valued nonlinear polynomial functional in a Hilbert space. This algorithm calculates the Adomian polynomials without the complicated operations such as parametrization, expansion, regrouping, differentiation, etc. The algorithm involves only some matrix operations. Because of the simplicity in the mathematical operations, the new algorithm is faster and more efficient than the other algorithms previously reported in the literature. We also implement the algorithm in the MATHEMATICA code. The computing speed and efficiency of the new algorithm are compared with some other algorithms in the one-dimensional case.
In stochastic zeroth-order optimization, a problem of practical relevance is understanding how to fully exploit the local geometry of the underlying objective function. We consider a fundamental setting in which the objective function is quadratic, and provide the first tight characterization of the optimal Hessian-dependent sample complexity. Our contribution is twofold. First, from an information-theoretic point of view, we prove tight lower bounds on Hessian-dependent complexities by introducing a concept called energy allocation, which captures the interaction between the searching algorithm and the geometry of objective functions. A matching upper bound is obtained by solving the optimal energy spectrum. Then, algorithmically, we show the existence of a Hessian-independent algorithm that universally achieves the asymptotic optimal sample complexities for all Hessian instances. The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions, which are enabled by a truncation method.
In this paper we present a new H(div)-conforming unfitted finite element method for the mixed Poisson problem which is robust in the cut configuration and preserves conservation properties of body-fitted finite element methods. The key is to formulate the divergence-constraint on the active mesh, instead of the physical domain, in order to obtain robustness with respect to cut configurations without the need for a stabilization that pollutes the mass balance. This change in the formulation results in a slight inconsistency, but does not affect the accuracy of the flux variable. By applying post-processings for the scalar variable, in virtue of classical local post-processings in body-fitted methods, we retain optimal convergence rates for both variables and even the superconvergence after post-processing of the scalar variable. We present the method and perform a rigorous a-priori error analysis of the method and discuss several variants and extensions. Numerical experiments confirm the theoretical results.
Markov chain Monte Carlo (MCMC) algorithms have played a significant role in statistics, physics, machine learning and others, and they are the only known general and efficient approach for some high-dimensional problems. The random walk Metropolis (RWM) algorithm as the most classical MCMC algorithm, has had a great influence on the development and practice of science and engineering. The behavior of the RWM algorithm in high-dimensional problems is typically investigated through a weak convergence result of diffusion processes. In this paper, we utilize the Mosco convergence of Dirichlet forms in analyzing the RWM algorithm on large graphs, whose target distribution is the Gibbs measure that includes any probability measure satisfying a Markov property. The abstract and powerful theory of Dirichlet forms allows us to work directly and naturally on the infinite-dimensional space, and our notion of Mosco convergence allows Dirichlet forms associated with the RWM chains to lie on changing Hilbert spaces. Through the optimal scaling problem, we demonstrate the impressive strengths of the Dirichlet form approach over the standard diffusion approach.
The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it might not be feasible to compute its degree. Instead, one can try to estimate the degree using probabilistic tests. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function $f$ is below a certain value $k$. The test involves picking an affine space of dimension $k$ and testing whether the values on $f$ on that space sum up to zero. If $deg(f)<k$, then $f$ will always pass the test, otherwise it will sometimes pass and sometimes fail the test, depending on which affine space was chosen. The probability of failing the proposed test is closely related to the number of monomials of degree $k$ in a polynomial $g$, averaged over all the polynomials $g$ which are affine equivalent to $f$. We initiate the study of the probability of failing the proposed ``$deg(f)<k$'' test. We show that in the particular case when the degree of $f$ is actually equal to $k$, the probability will be in the interval $(0.288788, 0.5]$, and therefore a small number of runs of the test is sufficient to give, with very high probability, the correct answer. Exact values of this probability for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.
Quantiles and expectiles, which are two important concepts and tools in tail risk measurements, can be regarded as an extension of median and mean, respectively. Both of these tail risk measurers can actually be embedded in a common framework of $L_p$ optimization with the absolute loss function ($p=1$) and quadratic loss function ($p=2$), respectively. When 0-1 loss function is frequently used in statistics, machine learning and decision theory, this paper introduces an 0-1 loss function based $L_0$ optimisation problem for tail risk measure and names its solution as modile, which can be regarded as an extension of mode. Mode, as another measure of central tendency, is more robust than expectiles with outliers and easy to compute than quantiles. However, mode based extension for tail risk measure is new. This paper shows that the proposed modiles are not only more conservative than quantiles and expectiles for skewed and heavy-tailed distributions, but also providing or including the unique interpretation of these measures. Further, the modiles can be regarded as a type of generalized quantiles and doubly truncated tail measure whcih have recently attracted a lot of attention in the literature. The asymptotic properties of the corresponding sample-based estimators of modiles are provided, which, together with numerical analysis results, show that the proposed modiles are promising for tail measurement.
We initiate a principled study of algorithmic collective action on digital platforms that deploy machine learning algorithms. We propose a simple theoretical model of a collective interacting with a firm's learning algorithm. The collective pools the data of participating individuals and executes an algorithmic strategy by instructing participants how to modify their own data to achieve a collective goal. We investigate the consequences of this model in three fundamental learning-theoretic settings: the case of a nonparametric optimal learning algorithm, a parametric risk minimizer, and gradient-based optimization. In each setting, we come up with coordinated algorithmic strategies and characterize natural success criteria as a function of the collective's size. Complementing our theory, we conduct systematic experiments on a skill classification task involving tens of thousands of resumes from a gig platform for freelancers. Through more than two thousand model training runs of a BERT-like language model, we see a striking correspondence emerge between our empirical observations and the predictions made by our theory. Taken together, our theory and experiments broadly support the conclusion that algorithmic collectives of exceedingly small fractional size can exert significant control over a platform's learning algorithm.
Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.
We establish globally optimal solutions to a class of fractional optimization problems on a class of constraint sets, whose key characteristics are as follows: 1) The numerator and the denominator of the objective function are both convex, semi-algebraic, Lipschitz continuous and differentiable with Lipschitz continuous gradients on the constraint set. 2) The constraint set is closed, convex and semi-algebraic. Compared with Dinkelbach's approach, our novelty falls into the following aspects: 1) Dinkelbach's has to solve a concave maximization problem in each iteration, which is nontrivial to obtain a solution, while ours only needs to conduct one proximity gradient operation in each iteration. 2) Dinkelbach's requires at least one nonnegative point for the numerator to proceed the algorithm, but ours does not, which is available to a much wider class of situations. 3) Dinkelbach's requires a closed and bounded constraint set, while ours only needs the closedness but not necessarily the boundedness. Therefore, our approach is viable for many more practical models, like optimizing the Sharpe ratio (SR) or the Information ratio in mathematical finance. Numerical experiments show that our approach achieves the ground-truth solutions in two simple examples. For real-world financial data, it outperforms several existing approaches for SR maximization.
The NSGA-II is one of the most prominent algorithms to solve multi-objective optimization problems. Despite numerous successful applications, several studies have shown that the NSGA-II is less effective for larger numbers of objectives. In this work, we use mathematical runtime analyses to rigorously demonstrate and quantify this phenomenon. We show that even on the simple $m$-objective generalization of the discrete OneMinMax benchmark, where every solution is Pareto optimal, the NSGA-II also with large population sizes cannot compute the full Pareto front (objective vectors of all Pareto optima) in sub-exponential time when the number of objectives is at least three. The reason for this unexpected behavior lies in the fact that in the computation of the crowding distance, the different objectives are regarded independently. This is not a problem for two objectives, where any sorting of a pair-wise incomparable set of solutions according to one objective is also such a sorting according to the other objective (in the inverse order).
Based on binary inquiries, we developed an algorithm to estimate population quantiles under Local Differential Privacy (LDP). By self-normalizing, our algorithm provides asymptotically normal estimation with valid inference, resulting in tight confidence intervals without the need for nuisance parameters to be estimated. Our proposed method can be conducted fully online, leading to high computational efficiency and minimal storage requirements with $\mathcal{O}(1)$ space. We also proved an optimality result by an elegant application of one central limit theorem of Gaussian Differential Privacy (GDP) when targeting the frequently encountered median estimation problem. With mathematical proof and extensive numerical testing, we demonstrate the validity of our algorithm both theoretically and experimentally.