亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Matrix/array analysis of networks can provide significant insight into their behavior and aid in their operation and protection. Prior work has demonstrated the analytic, performance, and compression capabilities of GraphBLAS (graphblas.org) hypersparse matrices and D4M (d4m.mit.edu) associative arrays (a mathematical superset of matrices). Obtaining the benefits of these capabilities requires integrating them into operational systems, which comes with its own unique challenges. This paper describes two examples of real-time operational implementations. First, is an operational GraphBLAS implementation that constructs anonymized hypersparse matrices on a high-bandwidth network tap. Second, is an operational D4M implementation that analyzes daily cloud gateway logs. The architectures of these implementations are presented. Detailed measurements of the resources and the performance are collected and analyzed. The implementations are capable of meeting their operational requirements using modest computational resources (a couple of processing cores). GraphBLAS is well-suited for low-level analysis of high-bandwidth connections with relatively structured network data. D4M is well-suited for higher-level analysis of more unstructured data. This work demonstrates that these technologies can be implemented in operational settings.

相關內容

We consider the transmission of spatially correlated analog information in a wireless sensor network (WSN) through fading single-input and multiple-output (SIMO) multiple access channels (MACs) with low-latency requirements. A lattice-based analog joint source-channel coding (JSCC) approach is considered where vectors of consecutive source symbols are encoded at each sensor using an n-dimensional lattice and then transmitted to a multiantenna central node. We derive a minimum mean square error (MMSE) decoder that accounts for both the multidimensional structure of the encoding lattices and the spatial correlation. In addition, a sphere decoder is considered to simplify the required searches over the multidimensional lattices. Different lattice-based mappings are approached and the impact of their size and density on performance and latency is analyzed. Results show that, while meeting low-latency constraints, lattice-based analog JSCC provides performance gains and higher reliability with respect to the state-of-the-art JSCC schemes.

State estimation for legged robots is challenging due to their highly dynamic motion and limitations imposed by sensor accuracy. By integrating Kalman filtering, optimization, and learning-based modalities, we propose a hybrid solution that combines proprioception and exteroceptive information for estimating the state of the robot's trunk. Leveraging joint encoder and IMU measurements, our Kalman filter is enhanced through a single-rigid body model that incorporates ground reaction force control outputs from convex Model Predictive Control optimization. The estimation is further refined through Gated Recurrent Units, which also considers semantic insights and robot height from a Vision Transformer autoencoder applied on depth images. This framework not only furnishes accurate robot state estimates, including uncertainty evaluations, but can minimize the nonlinear errors that arise from sensor measurements and model simplifications through learning. The proposed methodology is evaluated in hardware using a quadruped robot on various terrains, yielding a 65% improvement on the Root Mean Squared Error compared to our VIO SLAM baseline. Code example: //github.com/AlexS28/OptiState

Millions of online communities are governed by volunteer moderators, who shape their communities by setting and enforcing rules, recruiting additional moderators, and participating in the community themselves. These moderators must regularly make decisions about how to govern, yet it is challenging to determine what governance strategies are most successful, as measuring the `success' of governance is complex and nuanced. Furthermore, the incredible diversity in community topic, size, and membership all but guarantee that there is no `one-size-fits-all' solution for community governance. In this work, we measure governance by assessing how community members publicly discuss their own moderators. We quantify perceptions of moderators through 1.89 million labeled posts and comments made on reddit over an 18 month period, and relate these perceptions to characteristics of community governance and to different actions that community moderators can take. We identify key differences between different types of communities, and highlight promising strategies for moderator teams. Amongst other findings, we show that positive perceptions of moderators are associated with other measures of community health, and that strict rule enforcement is perceived more favorably for certain topics, such as news communities, than others. We investigate what kinds of moderators have the most positive impact on the community when they join the mod team, and find that moderators who are active community members before and during their mod tenures result in the largest improvement of community members' perceptions of moderators. We make all our models, datasets, and code public.

Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that is most relevant to a desired task at the receiver. Most existing approaches typically utilize neural networks (NNs) to design end-to-end semantic communication systems, where NN-based semantic encoders output continuously distributed signals to be sent directly to the channel in an analog fashion. In this work, we propose a joint coding-modulation (JCM) framework for digital semantic communications by using variational autoencoder (VAE). Our approach learns the transition probability from source data to discrete constellation symbols, thereby avoiding the non-differentiability problem of digital modulation. Meanwhile, by jointly designing the coding and modulation process together, we can match the obtained modulation strategy with the operating channel condition. We also derive a matching loss function with information-theoretic meaning for end-to-end training. Experiments on image semantic communication validate the superiority of our proposed JCM framework over the state-of-the-art quantization-based digital semantic coding-modulation methods across a wide range of channel conditions, transmission rates, and modulation orders. Furthermore, its performance gap to analog semantic communication reduces as the modulation order increases while enjoying the hardware implementation convenience.

The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with $N$ experts, achieve the efficacy of $N$ individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.

This study addresses the application of deep learning techniques in joint sound signal classification and localization networks. Current state-of-the-art sound source localization deep learning networks lack feature aggregation within their architecture. Feature aggregation enhances model performance by enabling the consolidation of information from different feature scales, thereby improving feature robustness and invariance. This is particularly important in SSL networks, which must differentiate direct and indirect acoustic signals. To address this gap, we adapt feature aggregation techniques from computer vision neural networks to signal detection neural networks. Additionally, we propose the Scale Encoding Network (SEN) for feature aggregation to encode features from various scales, compressing the network for more computationally efficient aggregation. To evaluate the efficacy of feature aggregation in SSL networks, we integrated the following computer vision feature aggregation sub-architectures into a SSL control architecture: Path Aggregation Network (PANet), Weighted Bi-directional Feature Pyramid Network (BiFPN), and SEN. These sub-architectures were evaluated using two metrics for signal classification and two metrics for direction-of-arrival regression. PANet and BiFPN are established aggregators in computer vision models, while the proposed SEN is a more compact aggregator. The results suggest that models incorporating feature aggregations outperformed the control model, the Sound Event Localization and Detection network (SELDnet), in both sound signal classification and localization. The feature aggregation techniques enhance the performance of sound detection neural networks, particularly in direction-of-arrival regression.

The assumption that data are invariant under the action of a compact group is implicit in many statistical modeling assumptions such as normality, or the assumption of independence and identical distributions. Hence, testing for the presence of such invariances offers a principled way to falsify various statistical models. In this article, we develop sequential, anytime-valid tests of distributional symmetry under the action of general compact groups. The tests that are developed allow for the continuous monitoring of data as it is collected while keeping type-I error guarantees, and include tests for exchangeability and rotational symmetry as special examples. The main tool to this end is the machinery developed for conformal prediction. The resulting test statistic, called a conformal martingale, can be interpreted as a likelihood ratio. We use this interpretation to show that the test statistics are optimal -- in a specific log-optimality sense -- against certain alternatives. Furthermore, we draw a connection between conformal prediction, anytime-valid tests of distributional invariance, and current developments on anytime-valid testing. In particular, we extend existing anytime-valid tests of independence, which leverage exchangeability, to work under general group invariances. Additionally, we discuss testing for invariance under subgroups of the permutation group and orthogonal group, the latter of which corresponds to testing the assumptions behind linear regression models.

Next generation mobile networks are poised to transition from monolithic structures owned and operated by single mobile network operators into multi-stakeholder networks where various parties contribute with infrastructure, resources, and services. However, a federation of networks and services brings along a crucial challenge: Guaranteeing secure and trustworthy access control among network entities of different administrative domains. This paper introduces a novel technical concept and a prototype, outlining and implementing a 5G Service-Based Architecture that utilizes Decentralized Identifiers and Verifiable Credentials instead of traditional X.509 certificates and OAuth2.0 access tokens to authenticate and authorize network functions among each other across administrative domains. This decentralized approach to identity and permission management for network functions reduces the risk of single points of failure associated with centralized public key infrastructures. It unifies access control mechanisms and lays the groundwork for lesser complex and more trustful cross-domain key management for highly collaborative network functions in a multi-party Service-Based Architecture of 6G.

Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.

北京阿比特科技有限公司