亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper discusses and evaluates ideas of data balancing and data augmentation in the context of mathematical objects: an important topic for both the symbolic computation and satisfiability checking communities, when they are making use of machine learning techniques to optimise their tools. We consider a dataset of non-linear polynomial problems and the problem of selecting a variable ordering for cylindrical algebraic decomposition to tackle these with. By swapping the variable names in already labelled problems, we generate new problem instances that do not require any further labelling when viewing the selection as a classification problem. We find this augmentation increases the accuracy of ML models by 63% on average. We study what part of this improvement is due to the balancing of the dataset and what is achieved thanks to further increasing the size of the dataset, concluding that both have a very significant effect. We finish the paper by reflecting on how this idea could be applied in other uses of machine learning in mathematics.

相關內容

數(shu)據增(zeng)強在機(ji)器學(xue)習領(ling)域多指采用(yong)一(yi)些方法(比如數(shu)據蒸餾,正負樣本均衡等)來提高模型數(shu)據集的質量,增(zeng)強數(shu)據。

The modelling of dynamical systems from discrete observations is a challenge faced by modern scientific and engineering data systems. Hamiltonian systems are one such fundamental and ubiquitous class of dynamical systems. Hamiltonian neural networks are state-of-the-art models that unsupervised-ly regress the Hamiltonian of a dynamical system from discrete observations of its vector field under the learning bias of Hamilton's equations. Yet Hamiltonian dynamics are often complicated, especially in higher dimensions where the state space of the Hamiltonian system is large relative to the number of samples. A recently discovered remedy to alleviate the complexity between state variables in the state space is to leverage the additive separability of the Hamiltonian system and embed that additive separability into the Hamiltonian neural network. Following the nomenclature of physics-informed machine learning, we propose three separable Hamiltonian neural networks. These models embed additive separability within Hamiltonian neural networks. The first model uses additive separability to quadratically scale the amount of data for training Hamiltonian neural networks. The second model embeds additive separability within the loss function of the Hamiltonian neural network. The third model embeds additive separability through the architecture of the Hamiltonian neural network using conjoined multilayer perceptions. We empirically compare the three models against state-of-the-art Hamiltonian neural networks, and demonstrate that the separable Hamiltonian neural networks, which alleviate complexity between the state variables, are more effective at regressing the Hamiltonian and its vector field.

This paper proposes an algorithm that uses geospatial analytics and the muting of physical resources in next-generation base stations (BSs) to avoid interference between cellular (or terrestrial) and satellite communication (non-terrestrial) systems. The information exchange between satellite and terrestrial stations is minimal, but a hybrid edge cloud node with access to estimated satellite trajectories can enable these BSs to take proactive steps to avoid interference. To validate the superiority of our proposed algorithm over a conventional method, we show the performance of the algorithm using two measures: number of concurrent uses of Doppler corrected radio frequency resources and the sum-rate capacity of the BSs. Our algorithm not only provides significant sum-rate capacity gains in both directions enabling better use of the spectrum, but also runs in polynomial time, making it suitable for real-time interference avoidance.

Anomaly detection is an important task for complex systems (e.g., industrial facilities, manufacturing, large-scale science experiments), where failures in a sub-system can lead to low yield, faulty products, or even damage to components. While complex systems often have a wealth of data, labeled anomalies are typically rare (or even nonexistent) and expensive to acquire. Unsupervised approaches are therefore common and typically search for anomalies either by distance or density of examples in the input feature space (or some associated low-dimensional representation). This paper presents a novel approach called CoAD, which is specifically designed for multi-modal tasks and identifies anomalies based on \textit{coincident} behavior across two different slices of the feature space. We define an \textit{unsupervised} metric, $\hat{F}_\beta$, out of analogy to the supervised classification $F_\beta$ statistic. CoAD uses $\hat{F}_\beta$ to train an anomaly detection algorithm on \textit{unlabeled data}, based on the expectation that anomalous behavior in one feature slice is coincident with anomalous behavior in the other. The method is illustrated using a synthetic outlier data set and a MNIST-based image data set, and is compared to prior state-of-the-art on two real-world tasks: a metal milling data set and a data set from a particle accelerator.

We present an exact approach to analyze and quantify the sensitivity of higher moments of probabilistic loops with symbolic parameters, polynomial arithmetic and potentially uncountable state spaces. Our approach integrates methods from symbolic computation, probability theory, and static analysis in order to automatically capture sensitivity information about probabilistic loops. Sensitivity information allows us to formally establish how value distributions of probabilistic loop variables influence the functional behavior of loops, which can in particular be helpful when choosing values of loop variables in order to ensure efficient/expected computations. Our work uses algebraic techniques to model higher moments of loop variables via linear recurrence equations and introduce the notion of sensitivity recurrences. We show that sensitivity recurrences precisely model loop sensitivities, even in cases where the moments of loop variables do not satisfy a system of linear recurrences. As such, we enlarge the class of probabilistic loops for which sensitivity analysis was so far feasible. We demonstrate the success of our approach while analyzing the sensitivities of probabilistic loops.

This paper proposes an extension of Random Projection Depth (RPD) to cope with multiple modalities and non-convexity on data clouds. In the framework of the proposed method, the RPD is computed in a reproducing kernel Hilbert space. With the help of kernel principal component analysis, we expect that the proposed method can cope with the above multiple modalities and non-convexity. The experimental results demonstrate that the proposed method outperforms RPD and is comparable to other existing detection models on benchmark datasets regarding Area Under the Curves (AUCs) of Receiver Operating Characteristic (ROC).

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Mining graph data has become a popular research topic in computer science and has been widely studied in both academia and industry given the increasing amount of network data in the recent years. However, the huge amount of network data has posed great challenges for efficient analysis. This motivates the advent of graph representation which maps the graph into a low-dimension vector space, keeping original graph structure and supporting graph inference. The investigation on efficient representation of a graph has profound theoretical significance and important realistic meaning, we therefore introduce some basic ideas in graph representation/network embedding as well as some representative models in this chapter.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司