A key advantage of isogeometric discretizations is their accurate and well-behaved eigenfrequencies and eigenmodes. For degree two and higher, however, optical branches of spurious outlier frequencies and modes may appear due to boundaries or reduced continuity at patch interfaces. In this paper, we introduce a variational approach based on perturbed eigenvalue analysis that eliminates outlier frequencies without negatively affecting the accuracy in the remainder of the spectrum and modes. We then propose a pragmatic iterative procedure that estimates the perturbation parameters in such a way that the outlier frequencies are effectively reduced. We demonstrate that our approach allows for a much larger critical time-step size in explicit dynamics calculations. In addition, we show that the critical time-step size obtained with the proposed approach does not depend on the polynomial degree of spline basis functions.
We consider the Cauchy problem for the Helmholtz equation with a domain in R^d, d>2 with N cylindrical outlets to infinity with bounded inclusions in R^{d-1}. Cauchy data are prescribed on the boundary of the bounded domains and the aim is to find solution on the unbounded part of the boundary. In 1989, Kozlov and Maz'ya proposed an alternating iterative method for solving Cauchy problems associated with elliptic,self-adjoint and positive-definite operators in bounded domains. Different variants of this method for solving Cauchy problems associated with Helmholtz-type operators exists. We consider the variant proposed by Mpinganzima et al. for bounded domains and derive the necessary conditions for the convergence of the procedure in unbounded domains. For the numerical implementation, a finite difference method is used to solve the problem in a simple rectangular domain in R^2 that represent a truncated infinite strip. The numerical results shows that by appropriate truncation of the domain and with appropriate choice of the Robin parameters, the Robin-Dirichlet alternating iterative procedure is convergent.
This work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system, which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff-Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface deformation gradient is employed, such that an intermediate surface configuration is introduced. The surface metric and curvature of this intermediate configuration follow from the solution of nonlinear evolution laws - ordinary differential equations (ODEs) - that stem from a generalized viscoelastic solid model. The evolution laws are integrated numerically with the implicit Euler scheme and linearized within the Newton-Raphson scheme of the nonlinear finite element framework. The implementation of surface and bending viscosity is verified with the help of analytical solutions and shows ideal convergence behavior. The chosen numerical examples capture large deformations and typical viscoelasticity behavior, such as creep, relaxation, and strain rate dependence. It is shown that the proposed formulation can also be straightforwardly applied to model boundary viscoelasticity of 3D bodies.
Hyperspectral images often have hundreds of spectral bands of different wavelengths captured by aircraft or satellites that record land coverage. Identifying detailed classes of pixels becomes feasible due to the enhancement in spectral and spatial resolution of hyperspectral images. In this work, we propose a novel framework that utilizes both spatial and spectral information for classifying pixels in hyperspectral images. The method consists of three stages. In the first stage, the pre-processing stage, Nested Sliding Window algorithm is used to reconstruct the original data by {enhancing the consistency of neighboring pixels} and then Principal Component Analysis is used to reduce the dimension of data. In the second stage, Support Vector Machines are trained to estimate the pixel-wise probability map of each class using the spectral information from the images. Finally, a smoothed total variation model is applied to smooth the class probability vectors by {ensuring spatial connectivity} in the images. We demonstrate the superiority of our method against three state-of-the-art algorithms on six benchmark hyperspectral data sets with 10 to 50 training labels for each class. The results show that our method gives the overall best performance in accuracy. Especially, our gain in accuracy increases when the number of labeled pixels decreases and therefore our method is more advantageous to be applied to problems with small training set. Hence it is of great practical significance since expert annotations are often expensive and difficult to collect.
We propose a decomposition method for the spectral peaks in an observed frequency spectrum, which is efficiently acquired by utilizing the Fast Fourier Transform. In contrast to the traditional methods of waveform fitting on the spectrum, we optimize the problem from a more robust perspective. We model the peaks in spectrum as pseudo-symmetric functions, where the only constraint is a nonincreasing behavior around a central frequency when the distance increases. Our approach is more robust against arbitrary distortion, interference and noise on the spectrum that may be caused by an observation system. The time complexity of our method is linear, i.e., $O(N)$ per extracted spectral peak. Moreover, the decomposed spectral peaks show a pseudo-orthogonal behavior, where they conform to a power preserving equality.
This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.
Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.
In this article we suggest two discretization methods based on isogeometric analysis (IGA) for planar linear elasticity. On the one hand, we apply the well-known ansatz of weakly imposed symmetry for the stress tensor and obtain a well-posed mixed formulation. Such modified mixed problems have been already studied by different authors. But we concentrate on the exploitation of IGA results to handle also curved boundary geometries. On the other hand, we consider the more complicated situation of strong symmetry, i.e. we discretize the mixed weak form determined by the so-called Hellinger-Reissner variational principle. We show the existence of suitable approximate fields leading to an inf-sup stable saddle-point problem. For both discretization approaches we prove convergence statements and in case of weak symmetry we illustrate the approximation behavior by means of several numerical experiments.
Emulators that can bypass computationally expensive scientific calculations with high accuracy and speed can enable new studies of fundamental science as well as more potential applications. In this work we discuss solving a system of constraint equations efficiently using a self-learning emulator. A self-learning emulator is an active learning protocol that can be used with any emulator that faithfully reproduces the exact solution at selected training points. The key ingredient is a fast estimate of the emulator error that becomes progressively more accurate as the emulator is improved, and the accuracy of the error estimate can be corrected using machine learning. We illustrate with three examples. The first uses cubic spline interpolation to find the solution of a transcendental equation with variable coefficients. The second example compares a spline emulator and a reduced basis method emulator to find solutions of a parameterized differential equation. The third example uses eigenvector continuation to find the eigenvectors and eigenvalues of a large Hamiltonian matrix that depends on several control parameters.
In this paper, the Lie symmetry analysis is proposed for a space-time convection-diffusion fractional differential equations with the Riemann-Liouville derivative by (2+1) independent variables and one dependent variable. We find a reduction form of our governed fractional differential equation using the similarity solution of our Lie symmetry. One-dimensional optimal system of Lie symmetry algebras is found. We present a computational method via the spectral method based on Bernstein's operational matrices to solve the two-dimensional fractional heat equation with some initial conditions.
We present a new sublinear time algorithm for approximating the spectral density (eigenvalue distribution) of an $n\times n$ normalized graph adjacency or Laplacian matrix. The algorithm recovers the spectrum up to $\epsilon$ accuracy in the Wasserstein-1 distance in $O(n\cdot \text{poly}(1/\epsilon))$ time given sample access to the graph. This result compliments recent work by David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant (2018), which obtains a solution with runtime independent of $n$, but exponential in $1/\epsilon$. We conjecture that the trade-off between dimension dependence and accuracy is inherent. Our method is simple and works well experimentally. It is based on a Chebyshev polynomial moment matching method that employees randomized estimators for the matrix trace. We prove that, for any Hermitian $A$, this moment matching method returns an $\epsilon$ approximation to the spectral density using just $O({1}/{\epsilon})$ matrix-vector products with $A$. By leveraging stability properties of the Chebyshev polynomial three-term recurrence, we then prove that the method is amenable to the use of coarse approximate matrix-vector products. Our sublinear time algorithm follows from combining this result with a novel sampling algorithm for approximating matrix-vector products with a normalized graph adjacency matrix. Of independent interest, we show a similar result for the widely used \emph{kernel polynomial method} (KPM), proving that this practical algorithm nearly matches the theoretical guarantees of our moment matching method. Our analysis uses tools from Jackson's seminal work on approximation with positive polynomial kernels.