The storage stack in the traditional operating system is primarily optimized towards improving the CPU utilization and hiding the long I/O latency imposed by the slow I/O devices such as hard disk drivers (HDDs). However, the emerging storage media experience significant technique shifts in the past decade, which exhibit high bandwidth and low latency. These high-performance storage devices, unfortunately, suffer from the huge overheads imposed by the system software including the long storage stack and the frequent context switch between the user and kernel modes. Many researchers have investigated huge efforts in addressing this challenge by constructing a direct software path between a user process and the underlying storage devices. We revisit such novel designs in the prior work and present a survey in this paper. Specifically, we classify the former research into three categories according to their commonalities. We then present the designs of each category based on the timeline and analyze their uniqueness and contributions. This paper also reviews the applications that exploit the characteristics of theses designs. Given that the user-space storage is a growing research field, we believe this paper can be an inspiration for future researchers, who are interested in the user-space storage system designs.
Polarization-adjusted convolutional (PAC) codes, as a concatenated coding scheme based on polar codes, is able to approach the finite-length bound of binary-input AWGN channel at short blocklengths. In this paper, we extend PAC codes to the fields of source coding and joint source-channel coding and show that they can also approach the corresponding finite-length bounds at short blocklengths.
The generation and verification of quantum states are fundamental tasks for quantum information processing that have recently been investigated by Irani, Natarajan, Nirkhe, Rao and Yuen [CCC 2022], Rosenthal and Yuen [ITCS 2022], Metger and Yuen [FOCS 2023] under the term \emph{state synthesis}. This paper studies this concept from the viewpoint of quantum distributed computing, and especially distributed quantum Merlin-Arthur (dQMA) protocols. We first introduce a novel task, on a line, called state generation with distributed inputs (SGDI). In this task, the goal is to generate the quantum state $U\ket{\psi}$ at the rightmost node of the line, where $\ket{\psi}$ is a quantum state given at the leftmost node and $U$ is a unitary matrix whose description is distributed over the nodes of the line. We give a dQMA protocol for SGDI and utilize this protocol to construct a dQMA protocol for the Set Equality problem studied by Naor, Parter and Yogev [SODA 2020], and complement our protocol by showing classical lower bounds for this problem. Our second contribution is a dQMA protocol, based on a recent work by Zhu and Hayashi [Physical Review A, 2019], to create EPR-pairs between adjacent nodes of a network without quantum communication. As an application of this dQMA protocol, we prove a general result showing how to convert any dQMA protocol on an arbitrary network into another dQMA protocol where the verification stage does not require any quantum communication.
Perception that involves multi-object detection and tracking, and trajectory prediction are two major tasks of autonomous driving. However, they are currently mostly studied separately, which results in most trajectory prediction modules being developed based on ground truth trajectories without taking into account that trajectories extracted from the detection and tracking modules in real-world scenarios are noisy. These noisy trajectories can have a significant impact on the performance of the trajectory predictor and can lead to serious prediction errors. In this paper, we build an end-to-end framework for detection, tracking, and trajectory prediction called ODTP (Online Detection, Tracking and Prediction). It adopts the state-of-the-art online multi-object tracking model, QD-3DT, for perception and trains the trajectory predictor, DCENet++, directly based on the detection results without purely relying on ground truth trajectories. We evaluate the performance of ODTP on the widely used nuScenes dataset for autonomous driving. Extensive experiments show that ODPT achieves high performance end-to-end trajectory prediction. DCENet++, with the enhanced dynamic maps, predicts more accurate trajectories than its base model. It is also more robust when compared with other generative and deterministic trajectory prediction models trained on noisy detection results.
Existing approaches to distributed matrix computations involve allocating coded combinations of submatrices to worker nodes, to build resilience to stragglers and/or enhance privacy. In this study, we consider the challenge of preserving input sparsity in such approaches to retain the associated computational efficiency enhancements. First, we find a lower bound on the weight of coding, i.e., the number of submatrices to be combined to obtain coded submatrices to provide the resilience to the maximum possible number of stragglers (for given number of nodes and their storage constraints). Next we propose a distributed matrix computation scheme which meets this exact lower bound on the weight of the coding. Further, we develop controllable trade-off between worker computation time and the privacy constraint for sparse input matrices in settings where the worker nodes are honest but curious. Numerical experiments conducted in Amazon Web Services (AWS) validate our assertions regarding straggler mitigation and computation speed for sparse matrices.
Visual perception is an important component for autonomous navigation of unmanned surface vessels (USV), particularly for the tasks related to autonomous inspection and tracking. These tasks involve vision-based navigation techniques to identify the target for navigation. Reduced visibility under extreme weather conditions in marine environments makes it difficult for vision-based approaches to work properly. To overcome these issues, this paper presents an autonomous vision-based navigation framework for tracking target objects in extreme marine conditions. The proposed framework consists of an integrated perception pipeline that uses a generative adversarial network (GAN) to remove noise and highlight the object features before passing them to the object detector (i.e., YOLOv5). The detected visual features are then used by the USV to track the target. The proposed framework has been thoroughly tested in simulation under extremely reduced visibility due to sandstorms and fog. The results are compared with state-of-the-art de-hazing methods across the benchmarked MBZIRC simulation dataset, on which the proposed scheme has outperformed the existing methods across various metrics.
Our work presents a novel approach to shape optimization, that has the twofold objective to improve the efficiency of global optimization algorithms while promoting the generation of high-quality designs during the optimization process free of geometrical anomalies. This is accomplished by reducing the number of the original design variables defining a new reduced subspace where the geometrical variance is maximized and modeling the underlying generative process of the data via probabilistic linear latent variable models such as Factor Analysis and Probabilistic Principal Component Analysis. We show that the data follows approximately a Gaussian distribution when the shape modification method is linear and the design variables are sampled uniformly at random, due to the direct application of the central limit theorem. The model uncertainty is measured in terms of Mahalanobis distance, and the paper demonstrates that anomalous designs tend to exhibit a high value of this metric. This enables the definition of a new optimization model where anomalous geometries are penalized and consequently avoided during the optimization loop. The procedure is demonstrated for hull shape optimization of the DTMB 5415 model, extensively used as an international benchmark for shape optimization problems. The global optimization routine is carried out using Bayesian Optimization and the DIRECT algorithm. From the numerical results, the new framework improves the convergence of global optimization algorithms, while only designs with high-quality geometrical features are generated through the optimization routine thereby avoiding the wastage of precious computationally expensive simulations.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.