Differential games, in particular two-player sequential zero-sum games (a.k.a. minimax optimization), have been an important modeling tool in applied science and received renewed interest in machine learning due to many recent applications, such as adversarial training, generative models and reinforcement learning. However, existing theory mostly focuses on convex-concave functions with few exceptions. In this work, we propose two novel Newton-type algorithms for nonconvex-nonconcave minimax optimization. We prove their local convergence at strict local minimax points, which are surrogates of global solutions. We argue that our Newton-type algorithms nicely complement existing ones in that (a) they converge faster to strict local minimax points; (b) they are much more effective when the problem is ill-conditioned; (c) their computational complexity remains similar. We verify the effectiveness of our Newton-type algorithms through experiments on training GANs which are intrinsically nonconvex and ill-conditioned. Our code is available at //github.com/watml/min-max-2nd-order.
Bayesian nonparametric hierarchical priors provide flexible models for sharing of information within and across groups. We focus on latent feature allocation models, where the data structures correspond to multisets or unbounded sparse matrices. The fundamental development in this regard is the Hierarchical Indian Buffet process (HIBP), devised by Thibaux and Jordan (2007). However, little is known in terms of explicit tractable descriptions of the joint, marginal, posterior and predictive distributions of the HIBP. We provide explicit novel descriptions of these quantities, in the Bernoulli HIBP and general spike and slab HIBP settings, which allows for exact sampling and simpler practical implementation. We then extend these results to the more complex setting of hierarchies of general HIBP (HHIBP). The generality of our framework allows one to recognize important structure that may otherwise be masked in the Bernoulli setting, and involves characterizations via dynamic mixed Poisson random count matrices. Our analysis shows that the standard choice of hierarchical Beta processes for modeling across group sharing is not ideal in the classic Bernoulli HIBP setting proposed by Thibaux and Jordan (2007), or other spike and slab HIBP settings, and we thus indicate tractable alternative priors.
Gradient Boosting Machines (GBMs) have demonstrated remarkable success in solving diverse problems by utilizing Taylor expansions in functional space. However, achieving a balance between performance and generality has posed a challenge for GBMs. In particular, gradient descent-based GBMs employ the first-order Taylor expansion to ensure applicability to all loss functions, while Newton's method-based GBMs use positive Hessian information to achieve superior performance at the expense of generality. To address this issue, this study proposes a new generic Gradient Boosting Machine called Trust-region Boosting (TRBoost). In each iteration, TRBoost uses a constrained quadratic model to approximate the objective and applies the Trust-region algorithm to solve it and obtain a new learner. Unlike Newton's method-based GBMs, TRBoost does not require the Hessian to be positive definite, thereby allowing it to be applied to arbitrary loss functions while still maintaining competitive performance similar to second-order algorithms. The convergence analysis and numerical experiments conducted in this study confirm that TRBoost is as general as first-order GBMs and yields competitive results compared to second-order GBMs. Overall, TRBoost is a promising approach that balances performance and generality, making it a valuable addition to the toolkit of machine learning practitioners.
To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation (TMLE) and double machine learning (DML). To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment (MCI). We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial.
Genetic algorithms constitute a family of black-box optimization algorithms, which take inspiration from the principles of biological evolution. While they provide a general-purpose tool for optimization, their particular instantiations can be heuristic and motivated by loose biological intuition. In this work we explore a fundamentally different approach: Given a sufficiently flexible parametrization of the genetic operators, we discover entirely new genetic algorithms in a data-driven fashion. More specifically, we parametrize selection and mutation rate adaptation as cross- and self-attention modules and use Meta-Black-Box-Optimization to evolve their parameters on a set of diverse optimization tasks. The resulting Learned Genetic Algorithm outperforms state-of-the-art adaptive baseline genetic algorithms and generalizes far beyond its meta-training settings. The learned algorithm can be applied to previously unseen optimization problems, search dimensions & evaluation budgets. We conduct extensive analysis of the discovered operators and provide ablation experiments, which highlight the benefits of flexible module parametrization and the ability to transfer (`plug-in') the learned operators to conventional genetic algorithms.
Responsible use of data is an indispensable part of any machine learning (ML) implementation. ML developers must carefully collect and curate their datasets, and document their provenance. They must also make sure to respect intellectual property rights, preserve individual privacy, and use data in an ethical way. Over the past few years, ML models have significantly increased in size and complexity. These models require a very large amount of data and compute capacity to train, to the extent that any defects in the training corpus cannot be trivially remedied by retraining the model from scratch. Despite sophisticated controls on training data and a significant amount of effort dedicated to ensuring that training corpora are properly composed, the sheer volume of data required for the models makes it challenging to manually inspect each datum comprising a training corpus. One potential fix for training corpus data defects is model disgorgement -- the elimination of not just the improperly used data, but also the effects of improperly used data on any component of an ML model. Model disgorgement techniques can be used to address a wide range of issues, such as reducing bias or toxicity, increasing fidelity, and ensuring responsible usage of intellectual property. In this paper, we introduce a taxonomy of possible disgorgement methods that are applicable to modern ML systems. In particular, we investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
We study a class of generalized linear programs (GLP) in a large-scale setting, which includes simple, possibly nonsmooth convex regularizer and simple convex set constraints. By reformulating (GLP) as an equivalent convex-concave min-max problem, we show that the linear structure in the problem can be used to design an efficient, scalable first-order algorithm, to which we give the name \emph{Coordinate Linear Variance Reduction} (\textsc{clvr}; pronounced "clever"). \textsc{clvr} yields improved complexity results for (GLP) that depend on the max row norm of the linear constraint matrix in (GLP) rather than the spectral norm. When the regularization terms and constraints are separable, \textsc{clvr} admits an efficient lazy update strategy that makes its complexity bounds scale with the number of nonzero elements of the linear constraint matrix in (GLP) rather than the matrix dimensions. On the other hand, for the special case of linear programs, by exploiting sharpness, we propose a restart scheme for \textsc{clvr} to obtain empirical linear convergence. Then we show that Distributionally Robust Optimization (DRO) problems with ambiguity sets based on both $f$-divergence and Wasserstein metrics can be reformulated as (GLPs) by introducing sparsely connected auxiliary variables. We complement our theoretical guarantees with numerical experiments that verify our algorithm's practical effectiveness, in terms of wall-clock time and number of data passes.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax