Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, leads to critical insights for refining in-context learning.
Advances in reinforcement learning (RL) often rely on massive compute resources and remain notoriously sample inefficient. In contrast, the human brain is able to efficiently learn effective control strategies using limited resources. This raises the question whether insights from neuroscience can be used to improve current RL methods. Predictive processing is a popular theoretical framework which maintains that the human brain is actively seeking to minimize surprise. We show that recurrent neural networks which predict their own sensory states can be leveraged to minimise surprise, yielding substantial gains in cumulative reward. Specifically, we present the Predictive Processing Proximal Policy Optimization (P4O) agent; an actor-critic reinforcement learning agent that applies predictive processing to a recurrent variant of the PPO algorithm by integrating a world model in its hidden state. Even without hyperparameter tuning, P4O significantly outperforms a baseline recurrent variant of the PPO algorithm on multiple Atari games using a single GPU. It also outperforms other state-of-the-art agents given the same wall-clock time and exceeds human gamer performance on multiple games including Seaquest, which is a particularly challenging environment in the Atari domain. Altogether, our work underscores how insights from the field of neuroscience may support the development of more capable and efficient artificial agents.
While Large Language Models (LLMs) have proven to be exceptional on a variety of tasks after alignment, they may still produce responses that contradict the context or world knowledge confidently, a phenomenon known as ``hallucination''. In this paper, we demonstrate that reducing the inconsistency between the external knowledge encapsulated in the training data and the intrinsic knowledge inherited in the pretraining corpus could mitigate hallucination in alignment. Specifically, we introduce a novel knowledge consistent alignment (KCA) approach, which involves automatically formulating examinations based on external knowledge for accessing the comprehension of LLMs. For data encompassing knowledge inconsistency, KCA implements several simple yet efficient strategies for processing. We illustrate the superior performance of the proposed KCA approach in mitigating hallucinations across six benchmarks using LLMs of different backbones and scales. Furthermore, we confirm the correlation between knowledge inconsistency and hallucination, signifying the effectiveness of reducing knowledge inconsistency in alleviating hallucinations. Our code, model weights, and data are public at \url{//github.com/fanqiwan/KCA}.
Benchmark sets are extremely important for evaluating and developing global optimization algorithms and related solvers. A new test set named PCC benchmark is proposed especially for optimization problems of nonlinear curve fitting for the first time, with the aspiration of helping developers to investigate and compare the performance of different global optimization solvers, as well as more effective optimization algorithms could be developed. Compared with the well-known classical nonlinear curve fitting benchmark set given by the National Institute of Standards and Technology (NIST) of USA, the most distinguishable features of the PCC benchmark are small problem dimensions, unconstrained with free search domain and high level of difficulty for obtaining global optimization solutions, which make the PCC benchmark be not only suitable for validating the effectiveness of different global optimization algorithms, but also more ideal for verifying and comparing various related solvers. Seven of the world's leading global optimization solvers, including Baron, Antigone, Couenne, Lingo, Scip, Matlab-GA and 1stOpt, are employed to test NIST and PCC benchmark thoroughly in terms of both effectiveness and efficiency. The results showed that the NIST benchmark is relatively simple and not suitable for global optimization testing, meanwhile the PCC benchmark is a unique, challenging and effective test dataset for global optimization.
It is common practice for researchers to join public WhatsApp chats and scrape their contents for analysis. However, research shows collecting data this way contradicts user expectations and preferences, even if the data is effectively public. To overcome these issues, we outline design considerations for collecting WhatsApp chat data with improved user privacy by heightening user control and oversight of data collection and taking care to minimize the data researchers collect and process off a user's device. We refer to these design principles as User-Centered Data Sharing (UCDS). To evaluate our UCDS principles, we implemented a mobile application representing one possible instance of these improved data collection techniques and evaluated the viability of using the app to collect WhatsApp chat data. Second, we surveyed WhatsApp users to gather user perceptions on common existing WhatsApp data collection methods as well as UCDS methods. Our results show that we were able to glean similar informative insights into WhatsApp chats using UCDS principles in our prototype app to common, less privacy-preserving methods. Our survey showed that methods following the UCDS principles are preferred by users because they offered users more control over the data collection process. Future user studies could further expand upon UCDS principles to overcome complications of researcher-to-group communication in research on WhatsApp chats and evaluate these principles in other data sharing contexts.
This paper introduces a quantitative generalization of the ``more capable'' comparison of broadcast channels, which is termed ``more capable with advantage''. Some basic properties are demonstrated (including tensorization on product channels), and a characterisation is given for the cases of Binary Symmetric Channel (BSC) and Binary Erasure Channel (BEC). It is then applied to two problems. First, a list decoding bound on the BSC is given that applies to transitive codes that achieve capacity on the BEC. Second, new lower bounds on entropy rates of binary hidden Markov processes are derived.
Objective: This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance. Materials and Methods: We evaluated these models on two clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) identifying nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT. Results: Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples, and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all four components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed. Conclusion: While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.
There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years. But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more. Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly review these techniques and systems. We start by identifying five main obstacles to vector data management, namely vagueness of semantic similarity, large size of vectors, high cost of similarity comparison, lack of natural partitioning that can be used for indexing, and difficulty of efficiently answering hybrid queries that require both attributes and vectors. Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and indexing, techniques include vector compression, namely quantization, and partitioning based on randomization, learning partitioning, and navigable partitioning; for query optimization and execution, we describe new operators for hybrid queries, as well as techniques for plan enumeration, plan selection, and hardware accelerated execution. These techniques lead to a variety of VDBMSs across a spectrum of design and runtime characteristics, including native systems specialized for vectors and extended systems that incorporate vector capabilities into existing systems. We then discuss benchmarks, and finally we outline research challenges and point the direction for future work.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.