亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is well-known that one can construct solutions to the nonlocal Cahn-Hilliard equation with singular potentials via Yosida approximation with parameter $\lambda \to 0$. The usual method is based on compactness arguments and does not provide any rate of convergence. Here, we fill the gap and we obtain an explicit convergence rate $\sqrt{\lambda}$. The proof is based on the theory of maximal monotone operators and an observation that the nonlocal operator is of Hilbert-Schmidt type. Our estimate can provide convergence result for the Galerkin methods where the parameter $\lambda$ could be linked to the discretization parameters, yielding appropriate error estimates.

相關內容

Invariant finite-difference schemes for the one-dimensional shallow water equations in the presence of a magnetic field for various bottom topographies are constructed. Based on the results of the group classification recently carried out by the authors, finite-difference analogues of the conservation laws of the original differential model are obtained. Some typical problems are considered numerically, for which a comparison is made between the cases of a magnetic field presence and when it is absent (the standard shallow water model). The invariance of difference schemes in Lagrangian coordinates and the energy preservation on the obtained numerical solutions are also discussed.

We show that any application of the technique of unbiased simulation becomes perfect simulation when coalescence of the two coupled Markov chains can be practically assured in advance. This happens when a fixed number of iterations is high enough that the probability of needing any more to achieve coalescence is negligible; we suggest a value of $10^{-20}$. This finding enormously increases the range of problems for which perfect simulation, which exactly follows the target distribution, can be implemented. We design a new algorithm to make practical use of the high number of iterations by producing extra perfect sample points with little extra computational effort, at a cost of a small, controllable amount of serial correlation within sample sets of about 20 points. Different sample sets remain completely independent. The algorithm includes maximal coupling for continuous processes, to bring together chains that are already close. We illustrate the methodology on a simple, two-state Markov chain and on standard normal distributions up to 20 dimensions. Our technical formulation involves a nonzero probability, which can be made arbitrarily small, that a single perfect sample point may have its place taken by a "string" of many points which are assigned weights, each equal to $\pm 1$, that sum to~$1$. A point with a weight of $-1$ is a "hole", which is an object that can be cancelled by an equivalent point that has the same value but opposite weight $+1$.

In \cite{wang2023towards}, a dual-consistent dual-weighted residual-based $h$-adaptive method has been proposed based on a Newton-GMG framework, towards the accurate calculation of a given quantity of interest from Euler equations. The performance of such a numerical method is satisfactory, i.e., the stable convergence of the quantity of interest can be observed in all numerical experiments. In this paper, we will focus on the efficiency issue to further develop this method, since efficiency is vital for numerical methods in practical applications such as the optimal design of the vehicle shape. Three approaches are studied for addressing the efficiency issue, i.e., i). using convolutional neural networks as a solver for dual equations, ii). designing an automatic adjustment strategy for the tolerance in the $h$-adaptive process to conduct the local refinement and/or coarsening of mesh grids, and iii). introducing OpenMP, a shared memory parallelization technique, to accelerate the module such as the solution reconstruction in the method. The feasibility of each approach and numerical issues are discussed in depth, and significant acceleration from those approaches in simulations can be observed clearly from a number of numerical experiments. In convolutional neural networks, it is worth mentioning that the dual consistency plays an important role to guarantee the efficiency of the whole method and that unstructured meshes are employed in all simulations.

We consider linear first-order systems of ordinary differential equations (ODEs) in port-Hamiltonian (pH) form. Physical parameters are remodelled as random variables to conduct an uncertainty quantification. A stochastic Galerkin projection yields a larger deterministic system of ODEs, which does not exhibit a pH form in general. We apply transformations of the original systems such that the stochastic Galerkin projection becomes structure-preserving. Furthermore, we investigate meaning and properties of the Hamiltonian function belonging to the stochastic Galerkin system. A large number of random variables implies a highdimensional stochastic Galerkin system, which suggests itself to apply model order reduction (MOR) generating a low-dimensional system of ODEs. We discuss structure preservation in projection-based MOR, where the smaller systems of ODEs feature pH form again. Results of numerical computations are presented using two test examples.

In this study, we investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation. Our approach is a simple discontinuous Galerkin method similar to the Crouzeix--Raviart finite element method. As our primary contribution, we show a new proof for the consistency term, which allows us to obtain an estimate of the anisotropic consistency error. The key idea of the proof is to apply the relation between the Raviart--Thomas finite element space and a discontinuous space. While inf-sup stable schemes of the discontinuous Galerkin method on shape-regular mesh partitions have been widely discussed, our results show that the Stokes element satisfies the inf-sup condition on anisotropic meshes. Furthermore, we also provide an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we compare calculation results for standard and anisotropic mesh partitions, and the results show the effectiveness of using anisotropic meshes for problems with boundary layers.

The dual consistency is an important issue in developing stable DWR error estimation towards the goal-oriented mesh adaptivity. In this paper, such an issue is studied in depth based on a Newton-GMG framework for the steady Euler equations. Theoretically, the numerical framework is redescribed using the Petrov-Galerkin scheme, based on which the dual consistency is depicted. A boundary modification technique is discussed for preserving the dual consistency within the Newton-GMG framework. Numerically, a geometrical multigrid is proposed for solving the dual problem, and a regularization term is designed to guarantee the convergence of the iteration. The following features of our method can be observed from numerical experiments, i). a stable numerical convergence of the quantity of interest can be obtained smoothly for problems with different configurations, and ii). towards accurate calculation of quantity of interest, mesh grids can be saved significantly using the proposed dual-consistent DWR method, compared with the dual-inconsistent one.

We propose a Hermite spectral method for the inelastic Boltzmann equation, which makes two-dimensional periodic problem computation affordable by the hardware nowadays. The new algorithm is based on a Hermite expansion, where the expansion coefficients for the VHS model are reduced into several summations and can be derived exactly. Moreover, a new collision model is built with a combination of the quadratic collision operator and a linearized collision operator, which helps us to balance the computational cost and the accuracy. Various numerical experiments, including spatially two-dimensional simulations, demonstrate the accuracy and efficiency of this numerical scheme.

Stochastic space-time fractional diffusion equations often appear in the modeling of the heat propagation in non-homogeneous medium. In this paper, we firstly investigate the Mittag--Leffler Euler integrator of a class of stochastic space-time fractional diffusion equations, whose super-convergence order is obtained by developing a helpful decomposition way for the time-fractional integral. Here, the developed decomposition way is the key to dealing with the singularity of the solution operator. Moreover, we study the Freidlin--Wentzell type large deviation principles of the underlying equation and its Mittag--Leffler Euler integrator based on the weak convergence approach. In particular, we prove that the large deviation rate function of the Mittag--Leffler Euler integrator $\Gamma$-converges to that of the underlying equation.

The Helmholtz equation is related to seismic exploration, sonar, antennas, and medical imaging applications. It is one of the most challenging problems to solve in terms of accuracy and convergence due to the scalability issues of the numerical solvers. For 3D large-scale applications, high-performance parallel solvers are also needed. In this paper, a matrix-free parallel iterative solver is presented for the three-dimensional (3D) heterogeneous Helmholtz equation. We consider the preconditioned Krylov subspace methods for solving the linear system obtained from finite-difference discretization. The Complex Shifted Laplace Preconditioner (CSLP) is employed since it results in a linear increase in the number of iterations as a function of the wavenumber. The preconditioner is approximately inverted using one parallel 3D multigrid cycle. For parallel computing, the global domain is partitioned blockwise. The matrix-vector multiplication and preconditioning operator are implemented in a matrix-free way instead of constructing large, memory-consuming coefficient matrices. Numerical experiments of 3D model problems demonstrate the robustness and outstanding strong scaling of our matrix-free parallel solution method. Moreover, the weak parallel scalability indicates our approach is suitable for realistic 3D heterogeneous Helmholtz problems with minimized pollution error.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

北京阿比特科技有限公司