亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Invariant finite-difference schemes for the one-dimensional shallow water equations in the presence of a magnetic field for various bottom topographies are constructed. Based on the results of the group classification recently carried out by the authors, finite-difference analogues of the conservation laws of the original differential model are obtained. Some typical problems are considered numerically, for which a comparison is made between the cases of a magnetic field presence and when it is absent (the standard shallow water model). The invariance of difference schemes in Lagrangian coordinates and the energy preservation on the obtained numerical solutions are also discussed.

相關內容

We present a priori error estimates for a multirate time-stepping scheme for coupled differential equations. The discretization is based on Galerkin methods in time using two different time meshes for two parts of the problem. We aim at surface coupled multiphysics problems like two-phase flows. Special focus is on the handling of the interface coupling to guarantee a coercive formulation as key to optimal order error estimates. In a sequence of increasing complexity, we begin with the coupling of two ordinary differential equations, coupled heat conduction equation, and finally a coupled Stokes problem. For this we show optimal multi-rate estimates in velocity and a suboptimal result in pressure. The a priori estimates prove that the multirate method decouples the two subproblems exactly. This is the basis for adaptive methods which can choose optimal lattices for the respective subproblems.

Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.

We study in this paper the monotonicity properties of the numerical solutions to Volterra integral equations with nonincreasing completely positive kernels on nonuniform meshes. There is a duality between the complete positivity and the properties of the complementary kernel being nonnegative and nonincreasing. Based on this, we propose the ``complementary monotonicity'' to describe the nonincreasing completely positive kernels, and the ``right complementary monotone'' (R-CMM) kernels as the analogue for nonuniform meshes. We then establish the monotonicity properties of the numerical solutions inherited from the continuous equation if the discretization has the R-CMM property. Such a property seems weaker than being log-convex and there is no resctriction on the step size ratio of the discretization for the R-CMM property to hold.

Hamilton-Jacobi (HJ) partial differential equations (PDEs) have diverse applications spanning physics, optimal control, game theory, and imaging sciences. This research introduces a first-order optimization-based technique for HJ PDEs, which formulates the time-implicit update of HJ PDEs as saddle point problems. We remark that the saddle point formulation for HJ equations is aligned with the primal-dual formulation of optimal transport and potential mean-field games (MFGs). This connection enables us to extend MFG techniques and design numerical schemes for solving HJ PDEs. We employ the primal-dual hybrid gradient (PDHG) method to solve the saddle point problems, benefiting from the simple structures that enable fast computations in updates. Remarkably, the method caters to a broader range of Hamiltonians, encompassing non-smooth and spatiotemporally dependent cases. The approach's effectiveness is verified through various numerical examples in both one-dimensional and two-dimensional examples, such as quadratic and $L^1$ Hamiltonians with spatial and time dependence.

This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under $s$-Gevrey assumptions on on the residual equation, we establish $s$-Gevrey bounds on the Fr\'echet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.

We consider a ranking problem where we have noisy observations from a matrix with isotonic columns whose rows have been permuted by some permutation $\pi$ *. This encompasses many models, including crowd-labeling and ranking in tournaments by pair-wise comparisons. In this work, we provide an optimal and polynomial-time procedure for recovering $\pi$ * , settling an open problem in [7]. As a byproduct, our procedure is used to improve the state-of-the art for ranking problems in the stochastically transitive model (SST). Our approach is based on iterative pairwise comparisons by suitable data-driven weighted means of the columns. These weights are built using a combination of spectral methods with new dimension-reduction techniques. In order to deal with the important case of missing data, we establish a new concentration inequality for sparse and centered rectangular Wishart-type matrices.

Solving the stationary nonlinear Fokker-Planck equations is important in applications and examples include the Poisson-Boltzmann equation and the two layer neural networks. Making use of the connection between the interacting particle systems and the nonlinear Fokker-Planck equations, we propose to solve the stationary solution by sampling from the $N$-body Gibbs distribution. This avoids simulation of the $N$-body system for long time and more importantly such a method can avoid the requirement of uniform propagation of chaos from direct simulation of the particle systems. We establish the convergence of the Gibbs measure to the stationary solution when the interaction kernel is bounded (not necessarily continuous) and the temperature is not very small. Numerical experiments are performed for the Poisson-Boltzmann equations and the two-layer neural networks to validate the method and the theory.

We investigate a class of parametric elliptic semilinear partial differential equations of second order with homogeneous essential boundary conditions, where the coefficients and the right-hand side (and hence the solution) may depend on a parameter. This model can be seen as a reaction-diffusion problem with a polynomial nonlinearity in the reaction term. The efficiency of various numerical approximations across the entire parameter space is closely related to the regularity of the solution with respect to the parameter. We show that if the coefficients and the right-hand side are analytic or Gevrey class regular with respect to the parameter, the same type of parametric regularity is valid for the solution. The key ingredient of the proof is the combination of the alternative-to-factorial technique from our previous work [1] with a novel argument for the treatment of the power-type nonlinearity in the reaction term. As an application of this abstract result, we obtain rigorous convergence estimates for numerical integration of semilinear reaction-diffusion problems with random coefficients using Gaussian and Quasi-Monte Carlo quadrature. Our theoretical findings are confirmed in numerical experiments.

We study space--time isogeometric discretizations of the linear acoustic wave equation that use B-splines of arbitrary degree $p$, both in space and time. We propose a space--time variational formulation that is obtained by adding a non-consistent penalty term of order $2p+2$ to the bilinear form coming from integration by parts. This formulation, when discretized with tensor-product spline spaces with maximal regularity in time, is unconditionally stable: the mesh size in time is not constrained by the mesh size in space. We give extensive numerical evidence for the good stability, approximation, dissipation and dispersion properties of the stabilized isogeometric formulation, comparing against stabilized finite element schemes, for a range of wave propagation problems with constant and variable wave speed.

We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.

北京阿比特科技有限公司