亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the stochastic optimization problem with smooth but not necessarily convex objectives in the heavy-tailed noise regime, where the stochastic gradient's noise is assumed to have bounded $p$th moment ($p\in(1,2]$). Zhang et al. (2020) is the first to prove the $\Omega(T^{\frac{1-p}{3p-2}})$ lower bound for convergence (in expectation) and provides a simple clipping algorithm that matches this optimal rate. Cutkosky and Mehta (2021) proposes another algorithm, which is shown to achieve the nearly optimal high-probability convergence guarantee $O(\log(T/\delta)T^{\frac{1-p}{3p-2}})$, where $\delta$ is the probability of failure. However, this desirable guarantee is only established under the additional assumption that the stochastic gradient itself is bounded in $p$th moment, which fails to hold even for quadratic objectives and centered Gaussian noise. In this work, we first improve the analysis of the algorithm in Cutkosky and Mehta (2021) to obtain the same nearly optimal high-probability convergence rate $O(\log(T/\delta)T^{\frac{1-p}{3p-2}})$, without the above-mentioned restrictive assumption. Next, and curiously, we show that one can achieve a faster rate than that dictated by the lower bound $\Omega(T^{\frac{1-p}{3p-2}})$ with only a tiny bit of structure, i.e., when the objective function $F(x)$ is assumed to be in the form of $\mathbb{E}_{\Xi\sim\mathcal{D}}[f(x,\Xi)]$, arguably the most widely applicable class of stochastic optimization problems. For this class of problems, we propose the first variance-reduced accelerated algorithm and establish that it guarantees a high-probability convergence rate of $O(\log(T/\delta)T^{\frac{1-p}{2p-1}})$ under a mild condition, which is faster than $\Omega(T^{\frac{1-p}{3p-2}})$. Notably, even when specialized to the finite-variance case, our result yields the (near-)optimal high-probability rate $O(\log(T/\delta)T^{-1/3})$.

相關內容

Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure structure identifiability. Moreover additional restrictions are often imposed in order to simplify the inference task: this is the case for the Gaussian noise assumption on additive non-linear models, which is common to many causal discovery approaches. In this paper we show the shortcomings of inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity of the noise terms. Then, we propose a novel method for inferring the topological ordering of the variables in the causal graph, from data generated according to an additive non-linear model with a generic noise distribution. This leads to NoGAM (Not only Gaussian Additive noise Models), a causal discovery algorithm with a minimal set of assumptions and state of the art performance, experimentally benchmarked on synthetic data.

Stochastic kinetic models (SKMs) are increasingly used to account for the inherent stochasticity exhibited by interacting populations of species in areas such as epidemiology, population ecology and systems biology. Species numbers are modelled using a continuous-time stochastic process, and, depending on the application area of interest, this will typically take the form of a Markov jump process or an It\^o diffusion process. Widespread use of these models is typically precluded by their computational complexity. In particular, performing exact fully Bayesian inference in either modelling framework is challenging due to the intractability of the observed data likelihood, necessitating the use of computationally intensive techniques such as particle Markov chain Monte Carlo (particle MCMC). It is proposed to increase the computational and statistical efficiency of this approach by leveraging the tractability of an inexpensive surrogate derived directly from either the jump or diffusion process. The surrogate is used in three ways: in the design of a gradient-based parameter proposal, to construct an appropriate bridge and in the first stage of a delayed-acceptance step. The resulting approach, which exactly targets the posterior of interest, offers substantial gains in efficiency over a standard particle MCMC implementation.

We address two open problems in sorting with priced information, introduced by [Charikar, Fagin, Guruswami, Kleinberg, Raghavan, Sahai (CFGKRS), STOC 2000]. In this setting, different comparisons have different (potentially infinite) costs. The goal is to find a sorting algorithm with small competitive ratio, defined as the (worst-case) ratio of the algorithm's cost to the cost of the cheapest proof of the sorted order. 1) When all costs are in $\{0,1,n,\infty\}$, we give an algorithm that has $\widetilde{O}(n^{3/4})$ competitive ratio. Our result refutes the hypothesis that a widely cited $\Omega(n)$ lower bound on the competitive ratio for finding the maximum extends to sorting. This lower bound by [Gupta, Kumar, FOCS 2000] uses costs in $\{0,1,n, \infty\}$ and was claimed as the reason why sorting with arbitrary costs seemed bleak and hopeless. Our algorithm also generalizes the algorithms for generalized sorting (all costs in $\{1,\infty\}$), a version initiated by [Huang, Kannan, Khanna, FOCS 2011] and addressed recently by [Kuszmaul, Narayanan, FOCS 2021]. 2) We answer the problem of bichromatic sorting posed by [CFGKRS]: We are given two sets $A$ and $B$ of total size $n$, and the cost of an $A-A$ comparison or a $B-B$ comparison is higher than an $A-B$ comparison. The goal is to sort $A \cup B$. An $\Omega(\log n)$ lower bound on competitive ratio follows from unit-cost sorting. We give a randomized algorithm with an almost-optimal w.h.p. competitive ratio of $O(\log^{3} n)$. We also study generalizations of the problem \emph{universal sorting} and \emph{bipartite sorting} (a generalization of nuts-and-bolts). Here, we define a notion of \textit{instance optimality}, and develop an algorithm for bipartite sorting which is $O(\log^{3} n)$ instance-optimal. Our framework of instance optimality applies to other static problems and may be of independent interest.

Many real-world systems often involve physical components or operating environments with highly nonlinear and uncertain dynamics. A number of different control algorithms can be used to design optimal controllers for such systems, assuming a reasonably high-fidelity model of the actual system. However, the assumptions made on the stochastic dynamics of the model when designing the optimal controller may no longer be valid when the system is deployed in the real-world. The problem addressed by this paper is the following: Suppose we obtain an optimal trajectory by solving a control problem in the training environment, how do we ensure that the real-world system trajectory tracks this optimal trajectory with minimal amount of error in a deployment environment. In other words, we want to learn how we can adapt an optimal trained policy to distribution shifts in the environment. Distribution shifts are problematic in safety-critical systems, where a trained policy may lead to unsafe outcomes during deployment. We show that this problem can be cast as a nonlinear optimization problem that could be solved using heuristic method such as particle swarm optimization (PSO). However, if we instead consider a convex relaxation of this problem, we can learn policies that track the optimal trajectory with much better error performance, and faster computation times. We demonstrate the efficacy of our approach on tracking an optimal path using a Dubin's car model, and collision avoidance using both a linear and nonlinear model for adaptive cruise control.

For a graph $G$, a $D$-diameter-reducing exact hopset is a small set of additional edges $H$ that, when added to $G$, maintains its graph metric but guarantees that all node pairs have a shortest path in $G \cup H$ using at most $D$ edges. A shortcut set is the analogous concept for reachability. These objects have been studied since the early '90s due to applications in parallel, distributed, dynamic, and streaming graph algorithms. For most of their history, the state-of-the-art construction for either object was a simple folklore algorithm, based on randomly sampling nodes to hit long paths in the graph. However, recent breakthroughs of Kogan and Parter [SODA '22] and Bernstein and Wein [SODA '23] have finally improved over the folklore diameter bound of $\widetilde{O}(n^{1/2})$ for shortcut sets and for $(1+\epsilon)$-approximate hopsets. For both objects it is now known that one can use $O(n)$ hop-edges to reduce diameter to $\widetilde{O}(n^{1/3})$. The only setting where folklore sampling remains unimproved is for exact hopsets. Can these improvements be continued? We settle this question negatively by constructing graphs on which any exact hopset of $O(n)$ edges has diameter $\widetilde{\Omega}(n^{1/2})$. This improves on the previous lower bound of $\widetilde{\Omega}(n^{1/3})$ by Kogan and Parter [FOCS '22]. Using similar ideas, we also polynomially improve the current lower bounds for shortcut sets, constructing graphs on which any shortcut set of $O(n)$ edges reduces diameter to $\widetilde{\Omega}(n^{1/4})$. This improves on the previous lower bound of $\Omega(n^{1/6})$ by Huang and Pettie [SIAM J. Disc. Math. '18]. We also extend our constructions to provide lower bounds against $O(p)$-size exact hopsets and shortcut sets for other values of $p$; in particular, we show that folklore sampling is near-optimal for exact hopsets in the entire range of $p \in [1, n^2]$.

In this paper, we propose a variance reduction approach for Markov chains based on additive control variates and the minimization of an appropriate estimate for the asymptotic variance. We focus on the particular case when control variates are represented as deep neural networks. We derive the optimal convergence rate of the asymptotic variance under various ergodicity assumptions on the underlying Markov chain. The proposed approach relies upon recent results on the stochastic errors of variance reduction algorithms and function approximation theory.

We consider a resource-constrained Edge Device (ED) embedded with a small-size ML model (S-ML) for a generic classification application, and an Edge Server (ES) that hosts a large-size ML model (L-ML). Since the inference accuracy of S-ML is lower than that of the L-ML, offloading all the data samples to the ES results in high inference accuracy, but it defeats the purpose of embedding S-ML on the ED and deprives the benefits of reduced latency, bandwidth savings, and energy efficiency of doing local inference. To get the best out of both worlds, i.e., the benefits of doing inference on the ED and the benefits of doing inference on ES, we explore the idea of Hierarchical Inference (HI), wherein S-ML inference is only accepted when it is correct, otherwise the data sample is offloaded for L-ML inference. However, the ideal implementation of HI is infeasible as the correctness of the S-ML inference is not known to the ED. We thus propose an online meta-learning framework to predict the correctness of the S-ML inference. The resulting online learning problem turns out to be a Prediction with Expert Advice (PEA) problem with continuous expert space. We consider the full feedback scenario, where the ED receives feedback on the correctness of the S-ML once it accepts the inference, and the no-local feedback scenario, where the ED does not receive the ground truth for the classification, and propose the HIL-F and HIL-N algorithms and prove a regret bound that is sublinear with the number of data samples. We evaluate and benchmark the performance of the proposed algorithms for image classification applications using four datasets, namely, Imagenette, Imagewoof, MNIST, and CIFAR-10.

Obtaining guarantees on the convergence of the minimizers of empirical risks to the ones of the true risk is a fundamental matter in statistical learning. Instead of deriving guarantees on the usual estimation error, the goal of this paper is to provide concentration inequalities on the distance between the sets of minimizers of the risks for a broad spectrum of estimation problems. In particular, the risks are defined on metric spaces through probability measures that are also supported on metric spaces. A particular attention will therefore be given to include unbounded spaces and non-convex cost functions that might also be unbounded. This work identifies a set of assumptions allowing to describe a regime that seem to govern the concentration in many estimation problems, where the empirical minimizers are stable. This stability can then be leveraged to prove parametric concentration rates in probability and in expectation. The assumptions are verified, and the bounds showcased, on a selection of estimation problems such as barycenters on metric space with positive or negative curvature, subspaces of covariance matrices, regression problems and entropic-Wasserstein barycenters.

The paper discusses a statistical problem related to testing for differences between two sparse networks with community structures. The community-wise edge probability matrices have entries of order $O(n^{-1}/\log n)$, where $n$ represents the size of the network. The authors propose a test statistic that combines a method proposed by Wu et al. \cite{WuTwoSampleSBM2022} and a resampling process. They derive the asymptotic null distribution of the test statistic and provide a guarantee of asymptotic power against the alternative hypothesis. To evaluate the performance of the proposed test statistic, the authors conduct simulations and provide real data examples. The results indicate that the proposed test statistic performs well in practice.

Comparison-based learning addresses the problem of learning when, instead of explicit features or pairwise similarities, one only has access to comparisons of the form: \emph{Object $A$ is more similar to $B$ than to $C$.} Recently, it has been shown that, in Hierarchical Clustering, single and complete linkage can be directly implemented using only such comparisons while several algorithms have been proposed to emulate the behaviour of average linkage. Hence, finding hierarchies (or dendrograms) using only comparisons is a well understood problem. However, evaluating their meaningfulness when no ground-truth nor explicit similarities are available remains an open question. In this paper, we bridge this gap by proposing a new revenue function that allows one to measure the goodness of dendrograms using only comparisons. We show that this function is closely related to Dasgupta's cost for hierarchical clustering that uses pairwise similarities. On the theoretical side, we use the proposed revenue function to resolve the open problem of whether one can approximately recover a latent hierarchy using few triplet comparisons. On the practical side, we present principled algorithms for comparison-based hierarchical clustering based on the maximisation of the revenue and we empirically compare them with existing methods.

北京阿比特科技有限公司