For a graph $G$, a $D$-diameter-reducing exact hopset is a small set of additional edges $H$ that, when added to $G$, maintains its graph metric but guarantees that all node pairs have a shortest path in $G \cup H$ using at most $D$ edges. A shortcut set is the analogous concept for reachability. These objects have been studied since the early '90s due to applications in parallel, distributed, dynamic, and streaming graph algorithms. For most of their history, the state-of-the-art construction for either object was a simple folklore algorithm, based on randomly sampling nodes to hit long paths in the graph. However, recent breakthroughs of Kogan and Parter [SODA '22] and Bernstein and Wein [SODA '23] have finally improved over the folklore diameter bound of $\widetilde{O}(n^{1/2})$ for shortcut sets and for $(1+\epsilon)$-approximate hopsets. For both objects it is now known that one can use $O(n)$ hop-edges to reduce diameter to $\widetilde{O}(n^{1/3})$. The only setting where folklore sampling remains unimproved is for exact hopsets. Can these improvements be continued? We settle this question negatively by constructing graphs on which any exact hopset of $O(n)$ edges has diameter $\widetilde{\Omega}(n^{1/2})$. This improves on the previous lower bound of $\widetilde{\Omega}(n^{1/3})$ by Kogan and Parter [FOCS '22]. Using similar ideas, we also polynomially improve the current lower bounds for shortcut sets, constructing graphs on which any shortcut set of $O(n)$ edges reduces diameter to $\widetilde{\Omega}(n^{1/4})$. This improves on the previous lower bound of $\Omega(n^{1/6})$ by Huang and Pettie [SIAM J. Disc. Math. '18]. We also extend our constructions to provide lower bounds against $O(p)$-size exact hopsets and shortcut sets for other values of $p$; in particular, we show that folklore sampling is near-optimal for exact hopsets in the entire range of $p \in [1, n^2]$.
We give the first agnostic, efficient, proper learning algorithm for monotone Boolean functions. Given $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$ uniformly random examples of an unknown function $f:\{\pm 1\}^n \rightarrow \{\pm 1\}$, our algorithm outputs a hypothesis $g:\{\pm 1\}^n \rightarrow \{\pm 1\}$ that is monotone and $(\mathrm{opt} + \varepsilon)$-close to $f$, where $\mathrm{opt}$ is the distance from $f$ to the closest monotone function. The running time of the algorithm (and consequently the size and evaluation time of the hypothesis) is also $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$, nearly matching the lower bound of Blais et al (RANDOM '15). We also give an algorithm for estimating up to additive error $\varepsilon$ the distance of an unknown function $f$ to monotone using a run-time of $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. Previously, for both of these problems, sample-efficient algorithms were known, but these algorithms were not run-time efficient. Our work thus closes this gap in our knowledge between the run-time and sample complexity. This work builds upon the improper learning algorithm of Bshouty and Tamon (JACM '96) and the proper semiagnostic learning algorithm of Lange, Rubinfeld, and Vasilyan (FOCS '22), which obtains a non-monotone Boolean-valued hypothesis, then ``corrects'' it to monotone using query-efficient local computation algorithms on graphs. This black-box correction approach can achieve no error better than $2\mathrm{opt} + \varepsilon$ information-theoretically; we bypass this barrier by a) augmenting the improper learner with a convex optimization step, and b) learning and correcting a real-valued function before rounding its values to Boolean. Our real-valued correction algorithm solves the ``poset sorting'' problem of [LRV22] for functions over general posets with non-Boolean labels.
For two graphs $G$ and $F$, the extremal number of $F$ in $G$, denoted by {ex}$(G,F)$, is the maximum number of edges in a spanning subgraph of $G$ not containing $F$ as a subgraph. Determining {ex}$(K_n,F)$ for a given graph $F$ is a classical extremal problem in graph theory. In 1962, Erd\H{o}s determined {ex}$(K_n,kK_3)$, which generalized Mantel's Theorem. On the other hand, in 1974, {Bollob\'{a}s}, Erd\H{o}s, and Straus determined {ex}$(K_{n_1,n_2,\dots,n_r},K_t)$, which extended Tur\'{a}n's Theorem to complete multipartite graphs. { In this paper,} we determine {ex}$(K_{n_1,n_2,\dots,n_r},kK_3)$ for $r\ge 4$ and $10k-4\le n_1+4k\le n_2\le n_3\le \cdots \le n_r$.
Randomized algorithms in numerical linear algebra can be fast, scalable and robust. This paper examines the effect of sketching on the right singular vectors corresponding to the smallest singular values of a tall-skinny matrix. We analyze a fast algorithm by Gilbert, Park and Wakin for finding the trailing right singular vectors using randomization by examining the quality of the solution using multiplicative perturbation theory. For an $m\times n$ ($m\geq n$) matrix, the algorithm runs with complexity $O(mn\log n +n^3)$ which is faster than the standard $O(mn^2)$ methods. In applications, numerical experiments show great speedups including a $30\times$ speedup for the AAA algorithm and $10\times$ speedup for the total least squares problem.
We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.
We study when the neural tangent kernel (NTK) approximation is valid for training a model with the square loss. In the lazy training setting of Chizat et al. 2019, we show that rescaling the model by a factor of $\alpha = O(T)$ suffices for the NTK approximation to be valid until training time $T$. Our bound is tight and improves on the previous bound of Chizat et al. 2019, which required a larger rescaling factor of $\alpha = O(T^2)$.
In single-objective optimization, it is well known that evolutionary algorithms also without further adjustments can tolerate a certain amount of noise in the evaluation of the objective function. In contrast, this question is not at all understood for multi-objective optimization. In this work, we conduct the first mathematical runtime analysis of a simple multi-objective evolutionary algorithm (MOEA) on a classic benchmark in the presence of noise in the objective functions. We prove that when bit-wise prior noise with rate $p \le \alpha/n$, $\alpha$ a suitable constant, is present, the \emph{simple evolutionary multi-objective optimizer} (SEMO) without any adjustments to cope with noise finds the Pareto front of the OneMinMax benchmark in time $O(n^2\log n)$, just as in the case without noise. Given that the problem here is to arrive at a population consisting of $n+1$ individuals witnessing the Pareto front, this is a surprisingly strong robustness to noise (comparably simple evolutionary algorithms cannot optimize the single-objective OneMax problem in polynomial time when $p = \omega(\log(n)/n)$). Our proofs suggest that the strong robustness of the MOEA stems from its implicit diversity mechanism designed to enable it to compute a population covering the whole Pareto front. Interestingly this result only holds when the objective value of a solution is determined only once and the algorithm from that point on works with this, possibly noisy, objective value. We prove that when all solutions are reevaluated in each iteration, then any noise rate $p = \omega(\log(n)/n^2)$ leads to a super-polynomial runtime. This is very different from single-objective optimization, where it is generally preferred to reevaluate solutions whenever their fitness is important and where examples are known such that not reevaluating solutions can lead to catastrophic performance losses.
This paper has two objectives. One is to give a linear time algorithm that solves the stable roommates problem (i.e., obtains one stable matching) using the stable marriage problem. The idea is that a stable matching of a roommate instance $I$ is a stable matching (that however must satisfy a certain condition) of some marriage instance $I'$. $I'$ is obtained just by making two copies of $I$, one for the men's table and the other for the women's table. The second objective is to investigate the possibility of reducing the roommate problem to the marriage problem (with a one-to-one correspondence between their stable matchings) in polynomial time. For a given $I$, we construct the rotation POSET $P$ of $I'$ and then we ``halve'' it to obtain $P'$, by which we can forget the above condition and can use all the closed subsets of $P'$ for all the stable matchings of $I$. Unfortunately, this approach works (runs in polynomial time) only for restricted instances.
An $f$-edge fault-tolerant distance sensitive oracle ($f$-DSO) with stretch $\sigma \ge 1$ is a data structure that preprocesses a given undirected, unweighted graph $G$ with $n$ vertices and $m$ edges, and a positive integer $f$. When queried with a pair of vertices $s, t$ and a set $F$ of at most $f$ edges, it returns a $\sigma$-approximation of the $s$-$t$-distance in $G-F$. We study $f$-DSOs that take subquadratic space. Thorup and Zwick [JACM 2015] showed that this is only possible for $\sigma \ge 3$. We present, for any constant $f \ge 1$ and $\alpha \in (0, \frac{1}{2})$, and any $\varepsilon > 0$, an $f$-DSO with stretch $ 3 + \varepsilon$ that takes $\widetilde{O}(n^{2-\frac{\alpha}{f+1}}/\varepsilon) \cdot O(\log n/\varepsilon)^{f+1}$ space and has an $O(n^\alpha/\varepsilon^2)$ query time. We also give an improved construction for graphs with diameter at most $D$. For any constant $k$, we devise an $f$-DSO with stretch $2k-1$ that takes $O(D^{f+o(1)} n^{1+1/k})$ space and has $\widetilde{O}(D^{o(1)})$ query time, with a preprocessing time of $O(D^{f+o(1)} mn^{1/k})$. Chechik, Cohen, Fiat, and Kaplan [SODA 2017] presented an $f$-DSO with stretch $1{+}\varepsilon$ and preprocessing time $O_\varepsilon(n^{5+o(1)})$, albeit with a super-quadratic space requirement. We show how to reduce their preprocessing time to $O_{\varepsilon}(mn^{2+o(1)})$.
We give query complexity lower bounds for convex optimization and the related feasibility problem. We show that quadratic memory is necessary to achieve the optimal oracle complexity for first-order convex optimization. In particular, this shows that center-of-mass cutting-planes algorithms in dimension $d$ which use $\tilde O(d^2)$ memory and $\tilde O(d)$ queries are Pareto-optimal for both convex optimization and the feasibility problem, up to logarithmic factors. Precisely, we prove that to minimize $1$-Lipschitz convex functions over the unit ball to $1/d^4$ accuracy, any deterministic first-order algorithms using at most $d^{2-\delta}$ bits of memory must make $\tilde\Omega(d^{1+\delta/3})$ queries, for any $\delta\in[0,1]$. For the feasibility problem, in which an algorithm only has access to a separation oracle, we show a stronger trade-off: for at most $d^{2-\delta}$ memory, the number of queries required is $\tilde\Omega(d^{1+\delta})$. This resolves a COLT 2019 open problem of Woodworth and Srebro.
A model of computation for which reasonable yet still incomplete lower bounds are known is the read-once branching program. Here variants of complexity measures successful in the study of read-once branching programs are defined and studied. Some new or simpler proofs of known bounds are uncovered. Branching program resources and the new measures are compared extensively. The new variants are developed in part in the hope of tackling read-k branching programs for the tree evaluation problem studied in Cook et al. Other computation problems are studied as well. In particular, a common view of a function studied by Gal and a function studied by Bollig and Wegener leads to the general combinatorics of blocking sets. Technical combinatorial results of independent interest are obtained. New leads towards further progress are discussed. An exponential lower bound for non-deterministic read-k branching programs for the GEN function is also derived, independently from the new measures.