亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The pandemic outbreak has profoundly changed our life, especially our social habits and communication behaviors. While this dramatic shock has heavily impacted human interaction rules, novel localization techniques are emerging to help society in complying with new policies, such as social distancing. Wireless sensing and machine learning are well suited to alleviate viruses propagation in a privacy-preserving manner. However, its wide deployment requires cost-effective installation and operational solutions. In public environments, individual localization information-such as social distancing-needs to be monitored to avoid safety threats when not properly observed. To this end, the high penetration of wireless devices can be exploited to continuously analyze-and-learn the propagation environment, thereby passively detecting breaches and triggering alerts if required. In this paper, we describe a novel passive and privacy-preserving human localization solution that relies on the directive transmission properties of mmWave communications to monitor social distancing and notify people in the area in case of violations. Thus, addressing the social distancing challenge in a privacy-preserving and cost-efficient manner. Our solution provides an overall accuracy of about 99% in the tested scenarios.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Software systems are ubiquitous, and their use is ingrained in our everyday lives. They enable us to get in touch with people quickly and easily, support us in gathering information, and help us perform our daily tasks. In return, we provide these systems with a large amount of personal information, often unaware that this is jeopardizing our privacy. End users are typically unaware of what data is collected, for what purpose, who has access to it, and where and how it is stored. To address this issue, we looked into how explainability might help to tackle this problem. We created privacy explanations that aim to help to clarify to end users why and for what purposes specific data is required. We asked end users about privacy explanations in a survey and found that the majority of respondents (91.6 \%) are generally interested in receiving privacy explanations. Our findings reveal that privacy explanations can be an important step towards increasing trust in software systems and can increase the privacy awareness of end users. These findings are a significant step in developing privacy-aware systems and incorporating usable privacy features into them, assisting users in protecting their privacy.

In this paper we present ODIN, a front-running protection system that uses a novel algorithm to measure Round-Trip-Time (RTT) to untrusted servers. ODIN is the decentralized equivalent of THOR, a RTT-aware front-running protection system for trading on centralized exchanges. Unlike centralized exchanges, P2P exchanges have potentially malicious peers which makes reliable direct RTT measurement impossible. In order to prevent tampering by an arbitrarily malicious peer, ODIN performs an indirect RTT measurement that never interacts directly with the target machine. The RTT to the target is estimated by measuring the RTT to a randomized IP address that is known to be close to the target's IP address in the global routing network. We find that ODIN's RTT estimation algorithm provides an accurate, practical, and generic solution for collecting network latency data in a hostile network environment.

We study the problem of policy optimization (PO) with linear temporal logic (LTL) constraints. The language of LTL allows flexible description of tasks that may be unnatural to encode as a scalar cost function. We consider LTL-constrained PO as a systematic framework, decoupling task specification from policy selection, and as an alternative to the standard of cost shaping. With access to a generative model, we develop a model-based approach that enjoys a sample complexity analysis for guaranteeing both task satisfaction and cost optimality (through a reduction to a reachability problem). Empirically, our algorithm can achieve strong performance even in low-sample regimes.

Wearable devices are increasingly used, thanks to the wide set of applications that can be deployed exploiting their ability to monitor physical activity and health-related parameters. Their usage has been recently proposed to perform biometric recognition, leveraging on the uniqueness of the recorded traits to generate discriminative identifiers. Most of the studies conducted on this topic have considered signals derived from cardiac activity, detecting it mainly using electrical measurements thorugh electrocardiography, or optical recordings employing photoplethysmography. In this paper we instead propose a BIOmetric recognition approach using Wearable Inertial Sensors detecting Heart activity (BIOWISH). In more detail, we investigate the feasibility of exploiting mechanical measurements obtained through seismocardiography and gyrocardiography to recognize a person. Several feature extractors and classifiers, including deep learning techniques relying on transfer learning and siamese training, are employed to derive distinctive characteristics from the considered signals, and differentiate between legitimate and impostor subjects. An multi-session database, comprising acquisitions taken from subjects performing different activities, is employed to perform experimental tests simulating a verification system. The obtained results testify that identifiers derived from measurements of chest vibrations, collected by wearable inertial sensors, could be employed to guarantee high recognition performance, even when considering short-time recordings.

Min-max optimization problems involving nonconvex-nonconcave objectives have found important applications in adversarial training and other multi-agent learning settings. Yet, no known gradient descent-based method is guaranteed to converge to (even local notions of) min-max equilibrium in the nonconvex-nonconcave setting. For all known methods, there exist relatively simple objectives for which they cycle or exhibit other undesirable behavior different from converging to a point, let alone to some game-theoretically meaningful one~\cite{flokas2019poincare,hsieh2021limits}. The only known convergence guarantees hold under the strong assumption that the initialization is very close to a local min-max equilibrium~\cite{wang2019solving}. Moreover, the afore-described challenges are not just theoretical curiosities. All known methods are unstable in practice, even in simple settings. We propose the first method that is guaranteed to converge to a local min-max equilibrium for smooth nonconvex-nonconcave objectives. Our method is second-order and provably escapes limit cycles as long as it is initialized at an easy-to-find initial point. Both the definition of our method and its convergence analysis are motivated by the topological nature of the problem. In particular, our method is not designed to decrease some potential function, such as the distance of its iterate from the set of local min-max equilibria or the projected gradient of the objective, but is designed to satisfy a topological property that guarantees the avoidance of cycles and implies its convergence.

Predictions about people, such as their expected educational achievement or their credit risk, can be performative and shape the outcome that they aim to predict. Understanding the causal effect of these predictions on the eventual outcomes is crucial for foreseeing the implications of future predictive models and selecting which models to deploy. However, this causal estimation task poses unique challenges: model predictions are usually deterministic functions of input features and highly correlated with outcomes. This can make the causal effects of predictions on outcomes impossible to disentangle from the direct effect of the covariates. We study this problem through the lens of causal identifiability, and despite the hardness of this problem in full generality, we highlight three natural scenarios where the causal relationship between covariates, predictions and outcomes can be identified from observational data: randomization in predictions, overparameterization of the predictive model deployed during data collection, and discrete prediction outputs. Empirically we show that given our identifiability conditions hold, standard variants of supervised learning that predict from predictions by treating the prediction as an input feature can indeed find transferable functional relationships that allow for conclusions about newly deployed predictive models. These positive results fundamentally rely on model predictions being recorded during data collection, bringing forward the importance of rethinking standard data collection practices to enable progress towards a better understanding of social outcomes and performative feedback loops.

Driver distractions are known to be the dominant cause of road accidents. While monitoring systems can detect non-driving-related activities and facilitate reducing the risks, they must be accurate and efficient to be applicable. Unfortunately, state-of-the-art methods prioritize accuracy while ignoring latency because they leverage cross-view and multimodal videos in which consecutive frames are highly similar. Thus, in this paper, we pursue time-effective detection models by neglecting the temporal relation between video frames and investigate the importance of each sensing modality in detecting drives' activities. Experiments demonstrate that 1) our proposed algorithms are real-time and can achieve similar performances (97.5\% AUC-PR) with significantly reduced computation compared with video-based models; 2) the top view with the infrared channel is more informative than any other single modality. Furthermore, we enhance the DAD dataset by manually annotating its test set to enable multiclassification. We also thoroughly analyze the influence of visual sensor types and their placements on the prediction of each class. The code and the new labels will be released.

The field of artificial intelligence has seen explosive growth and exponential success. The last phase of development showcased deep learnings ability to solve a variety of difficult problems across a multitude of domains. Many of these networks met and exceeded human benchmarks by becoming experts in the domains in which they are trained. Though the successes of artificial intelligence have begun to overshadow its failures, there is still much that separates current artificial intelligence tools from becoming the exceptional general learners that humans are. In this paper, we identify the ten commandments upon which human intelligence is systematically and hierarchically built. We believe these commandments work collectively to serve as the essential ingredients that lead to the emergence of higher-order cognition and intelligence. This paper discusses a computational framework that could house these ten commandments and suggests new architectural modifications that could lead to the development of smarter, more explainable, and generalizable artificial systems inspired by a neuromorphic approach.

Command, Control, Communication, and Intelligence (C3I) system is a kind of system-of-system that integrates computing machines, sensors, and communication networks. C3I systems are increasingly used in critical civil and military operations for achieving information superiority, assurance, and operational efficacy. C3I systems are no exception to the traditional systems facing widespread cyber-threats. However, the sensitive nature of the application domain (e.g., military operations) of C3I systems makes their security a critical concern. For instance, a cyber-attack on military installations can have detrimental impacts on national security. Therefore, in this paper, we review the state-of-the-art on the security of C3I systems. In particular, this paper aims to identify the security vulnerabilities, attack vectors, and countermeasures for C3I systems. We used the well-known systematic literature review method to select and review 77 studies on the security of C3I systems. Our review enabled us to identify 27 vulnerabilities, 22 attack vectors, and 62 countermeasures for C3I systems. This review has also revealed several areas for future research and identified key lessons with regards to C3I systems' security.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司