This work formulates a new approach to reduced modeling of parameterized, time-dependent partial differential equations (PDEs). The method employs Operator Inference, a scientific machine learning framework combining data-driven learning and physics-based modeling. The parametric structure of the governing equations is embedded directly into the reduced-order model, and parameterized reduced-order operators are learned via a data-driven linear regression problem. The result is a reduced-order model that can be solved rapidly to map parameter values to approximate PDE solutions. Such parameterized reduced-order models may be used as physics-based surrogates for uncertainty quantification and inverse problems that require many forward solves of parametric PDEs. Numerical issues such as well-posedness and the need for appropriate regularization in the learning problem are considered, and an algorithm for hyperparameter selection is presented. The method is illustrated for a parametric heat equation and demonstrated for the FitzHugh-Nagumo neuron model.
We explore the features of two methods of stabilization, aggregation and supremizer methods, for reduced-order modeling of parametrized optimal control problems. In both methods, the reduced basis spaces are augmented to guarantee stability. For the aggregation method, the reduced basis approximation spaces for the state and adjoint variables are augmented in such a way that the spaces are identical. For the supremizer method, the reduced basis approximation space for the state-control product space is augmented with the solutions of a supremizer equation. We implement both of these methods for solving several parametrized control problems and assess their performance. Results indicate that the number of reduced basis vectors needed to approximate the solution space to some tolerance with the supremizer method is much larger, possibly double, that for aggregation. There are also some cases where the supremizer method fails to produce a converged solution. We present results to compare the accuracy, efficiency, and computational costs associated with both methods of stabilization which suggest that stabilization by aggregation is a superior stabilization method for control problems.
Using a hierarchical construction, we develop methods for a wide and flexible class of models by taking a fully parametric approach to generalized linear mixed models with complex covariance dependence. The Laplace approximation is used to marginally estimate covariance parameters while integrating out all fixed and latent random effects. The Laplace approximation relies on Newton-Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data, for any patterned covariance matrix in the hierarchical generalized linear mixed models framework. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. The methods are illustrated with simulations from stochastic processes with known parameters, and their efficacy in terms of bias and interval coverage is shown through simulation experiments. Examples with binary and proportional data on election results, count data for marine mammals, and positive-continuous data on heavy metal concentration in the environment are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (e.g., geostatistical and areal models), time series models (e.g., first-order autoregressive models), and mixtures with typical random intercepts based on grouping.
When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.
In this article, a copula-based method for mixed regression models is proposed, where the conditional distribution of the response variable, given covariates, is modelled by a parametric family of continuous or discrete distributions, and the effect of a common latent variable pertaining to a cluster is modelled with a factor copula. We show how to estimate the parameters of the copula and the parameters of the margins, and we find the asymptotic behaviour of the estimation errors. Numerical experiments are performed to assess the precision of the estimators for finite samples. An example of an application is given using COVID-19 vaccination hesitancy from several countries. Computations are based on R package CopulaGAMM.
Discovering nonlinear differential equations that describe system dynamics from empirical data is a fundamental challenge in contemporary science. Here, we propose a methodology to identify dynamical laws by integrating denoising techniques to smooth the signal, sparse regression to identify the relevant parameters, and bootstrap confidence intervals to quantify the uncertainty of the estimates. We evaluate our method on well-known ordinary differential equations with an ensemble of random initial conditions, time series of increasing length, and varying signal-to-noise ratios. Our algorithm consistently identifies three-dimensional systems, given moderately-sized time series and high levels of signal quality relative to background noise. By accurately discovering dynamical systems automatically, our methodology has the potential to impact the understanding of complex systems, especially in fields where data are abundant, but developing mathematical models demands considerable effort.
SARSA, a classical on-policy control algorithm for reinforcement learning, is known to chatter when combined with linear function approximation: SARSA does not diverge but oscillates in a bounded region. However, little is known about how fast SARSA converges to that region and how large the region is. In this paper, we make progress towards this open problem by showing the convergence rate of projected SARSA to a bounded region. Importantly, the region is much smaller than the region that we project into, provided that the magnitude of the reward is not too large. Existing works regarding the convergence of linear SARSA to a fixed point all require the Lipschitz constant of SARSA's policy improvement operator to be sufficiently small; our analysis instead applies to arbitrary Lipschitz constants and thus characterizes the behavior of linear SARSA for a new regime.
An old problem in multivariate statistics is that linear Gaussian models are often unidentifiable, i.e. some parameters cannot be uniquely estimated. In factor (component) analysis, an orthogonal rotation of the factors is unidentifiable, while in linear regression, the direction of effect cannot be identified. For such linear models, non-Gaussianity of the (latent) variables has been shown to provide identifiability. In the case of factor analysis, this leads to independent component analysis, while in the case of the direction of effect, non-Gaussian versions of structural equation modelling solve the problem. More recently, we have shown how even general nonparametric nonlinear versions of such models can be estimated. Non-Gaussianity is not enough in this case, but assuming we have time series, or that the distributions are suitably modulated by some observed auxiliary variables, the models are identifiable. This paper reviews the identifiability theory for the linear and nonlinear cases, considering both factor analytic models and structural equation models.
This paper considers a downlink satellite communication system where a satellite cluster, i.e., a satellite swarm consisting of one leader and multiple follower satellites, serves a ground terminal. The satellites in the cluster form either a linear or circular formation moving in a group and cooperatively send their signals by maximum ratio transmission precoding. We first conduct a coordinate transformation to effectively capture the relative positions of satellites in the cluster. Next, we derive an exact expression for the orbital configuration-dependent outage probability under the Nakagami fading by using the distribution of the sum of independent Gamma random variables. In addition, we obtain a simpler approximated expression for the outage probability with the help of second-order moment-matching. We also analyze asymptotic behavior in the high signal-to-noise ratio regime and the diversity order of the outage performance. Finally, we verify the analytical results through Monte Carlo simulations. Our analytical results provide the performance of satellite cluster-based communication systems based on specific orbital configurations, which can be used to design reliable satellite clusters in terms of cluster size, formation, and orbits.
Rapid evolution of sensor technology, advances in instrumentation, and progress in devising data-acquisition softwares/hardwares are providing vast amounts of data for various complex phenomena, ranging from those in atomospheric environment, to large-scale porous formations, and biological systems. The tremendous increase in the speed of scientific computing has also made it possible to emulate diverse high-dimensional, multiscale and multiphysics phenomena that contain elements of stochasticity, and to generate large volumes of numerical data for them in heterogeneous systems. The difficulty is, however, that often the governing equations for such phenomena are not known. A prime example is flow, transport, and deformation processes in macroscopically-heterogeneous materials and geomedia. In other cases, the governing equations are only partially known, in the sense that they either contain various coefficients that must be evaluated based on data, or that they require constitutive relations, such as the relationship between the stress tensor and the velocity gradients for non-Newtonian fluids in the momentum conservation equation, in order for them to be useful to the modeling. Several classes of approaches are emerging to address such problems that are based on machine learning, symbolic regression, the Mori-Zwanzig projection operator formulation, sparse identification of nonlinear dynamics, data assimilation, and stochastic optimization and analysis, or a combination of two or more of such approaches. This Perspective describes the latest developments in this highly important area, and discusses possible future directions.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.