亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a multisensor fusion framework for the onboard real-time navigation of a quadrotor in an indoor environment. The framework integrates sensor readings from an Inertial Measurement Unit (IMU), a camera-based object detection algorithm, and an Ultra-WideBand (UWB) localisation system. Often the sensor readings are not always readily available, leading to inaccurate pose estimation and hence poor navigation performance. To effectively handle and fuse sensor readings, and accurately estimate the pose of the quadrotor for tracking a predefined trajectory, we design a Maximum Correntropy Criterion Kalman Filter (MCC-KF) that can manage intermittent observations. The MCC-KF is designed to improve the performance of the estimation process when is done with a Kalman Filter (KF), since KFs are likely to degrade dramatically in practical scenarios in which noise is non-Gaussian (especially when the noise is heavy-tailed). To evaluate the performance of the MCC-KF, we compare it with a previously designed Kalman filter by the authors. Through this comparison, we aim to demonstrate the effectiveness of the MCC-KF in handling indoor navigation missions. The simulation results show that our presented framework offers low positioning errors, while effectively handling intermittent sensor measurements.

相關內容

 是一種高效率的遞歸濾波器(自回歸濾波器),它能夠從一系列的不完全及包含噪聲的測量中,估計動態系統的狀態。

In a typical path planning pipeline for a ground robot, we build a map (e.g., an occupancy grid) of the environment as the robot moves around. While navigating indoors, a ground robot's knowledge about the environment may be limited due to occlusions. Therefore, the map will have many as-yet-unknown regions that may need to be avoided by a conservative planner. Instead, if a robot is able to correctly predict what its surroundings and occluded regions look like, the robot may be more efficient in navigation. In this work, we focus on predicting occupancy within the reachable distance of the robot to enable faster navigation and present a self-supervised proximity occupancy map prediction method, named ProxMaP. We show that ProxMaP generalizes well across realistic and real domains, and improves the robot navigation efficiency in simulation by \textbf{$12.40\%$} against the traditional navigation method. We share our findings on our project webpage (see //raaslab.org/projects/ProxMaP ).

It is often desirable to summarise a probability measure on a space $X$ in terms of a mode, or MAP estimator, i.e.\ a point of maximum probability. Such points can be rigorously defined using masses of metric balls in the small-radius limit. However, the theory is not entirely straightforward: the literature contains multiple notions of mode and various examples of pathological measures that have no mode in any sense. Since the masses of balls induce natural orderings on the points of $X$, this article aims to shed light on some of the problems in non-parametric MAP estimation by taking an order-theoretic perspective, which appears to be a new one in the inverse problems community. This point of view opens up attractive proof strategies based upon the Cantor and Kuratowski intersection theorems; it also reveals that many of the pathologies arise from the distinction between greatest and maximal elements of an order, and from the existence of incomparable elements of $X$, which we show can be dense in $X$, even for an absolutely continuous measure on $X = \mathbb{R}$.

Texture mapping as a fundamental task in 3D modeling has been well established for well-acquired aerial assets under consistent illumination, yet it remains a challenge when it is scaled to large datasets with images under varying views and illuminations. A well-performed texture mapping algorithm must be able to efficiently select views, fuse and map textures from these views to mesh models, at the same time, achieve consistent radiometry over the entire model. Existing approaches achieve efficiency either by limiting the number of images to one view per face, or simplifying global inferences to only achieve local color consistency. In this paper, we break this tie by proposing a novel and efficient texture mapping framework that allows the use of multiple views of texture per face, at the same time to achieve global color consistency. The proposed method leverages a loopy belief propagation algorithm to perform an efficient and global-level probabilistic inferences to rank candidate views per face, which enables face-level multi-view texture fusion and blending. The texture fusion algorithm, being non-parametric, brings another advantage over typical parametric post color correction methods, due to its improved robustness to non-linear illumination differences. The experiments on three different types of datasets (i.e. satellite dataset, unmanned-aerial vehicle dataset and close-range dataset) show that the proposed method has produced visually pleasant and texturally consistent results in all scenarios, with an added advantage of consuming less running time as compared to the state of the art methods, especially for large-scale dataset such as satellite-derived models.

The massive deployment of low-end wireless Internet of things (IoT) devices opens the challenge of finding de-centralized and lightweight alternatives for secret key distribution. A possible solution, coming from the physical layer, is the secret key generation (SKG) from channel state information (CSI) during the channel's coherence time. This work acknowledges the fact that the CSI consists of deterministic (predictable) and stochastic (unpredictable) components, loosely captured through the terms large-scale and small-scale fading, respectively. Hence, keys must be generated using only the random and unpredictable part. To detrend CSI measurements from deterministic components, a simple and lightweight approach based on Kalman filters is proposed and is evaluated using an implementation of the complete SKG protocol (including privacy amplification that is typically missing in many published works). In our study we use a massive multiple input multiple output (mMIMO) orthogonal frequency division multiplexing outdoor measured CSI dataset. The threat model assumes a passive eavesdropper in the vicinity (at 1 meter distance or less) from one of the legitimate nodes and the Kalman filter is parameterized to maximize the achievable key rate.

A growing body of literature in fairness-aware ML (fairML) aspires to mitigate machine learning (ML)-related unfairness in automated decision making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods that ensure that trained ML models achieve low values in those measures. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a considerable gap between centuries of philosophical discussion and recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the training and evaluation of ML models in ADM systems. We derive that fairness problems can already arise without the presence of protected attributes, pointing out that fairness and predictive performance are not irreconcilable counterparts, but rather that the latter is necessary to achieve the former. Moreover, we argue why and how causal considerations are necessary when assessing fairness in the presence of protected attributes. We achieve greater linguistic clarity for the discussion of fairML and propose general algorithms for practical applications.

One of the most important tasks for ensuring safe autonomous driving systems is accurately detecting road traffic lights and accurately determining how they impact the driver's actions. In various real-world driving situations, a scene may have numerous traffic lights with varying levels of relevance to the driver, and thus, distinguishing and detecting the lights that are relevant to the driver and influence the driver's actions is a critical safety task. This paper proposes a traffic light detection model which focuses on this task by first defining salient lights as the lights that affect the driver's future decisions. We then use this salience property to construct the LAVA Salient Lights Dataset, the first US traffic light dataset with an annotated salience property. Subsequently, we train a Deformable DETR object detection transformer model using Salience-Sensitive Focal Loss to emphasize stronger performance on salient traffic lights, showing that a model trained with this loss function has stronger recall than one trained without.

Simulation engines are widely adopted in robotics. However, they lack either full simulation control, ROS integration, realistic physics, or photorealism. Recently, synthetic data generation and realistic rendering has advanced tasks like target tracking and human pose estimation. However, when focusing on vision applications, there is usually a lack of information like sensor measurements or time continuity. On the other hand, simulations for most robotics tasks are performed in (semi)static environments, with specific sensors and low visual fidelity. To solve this, we introduced in our previous work a fully customizable framework for generating realistic animated dynamic environments (GRADE) [1]. We use GRADE to generate an indoor dynamic environment dataset and then compare multiple SLAM algorithms on different sequences. By doing that, we show how current research over-relies on known benchmarks, failing to generalize. Our tests with refined YOLO and Mask R-CNN models provide further evidence that additional research in dynamic SLAM is necessary. The code, results, and generated data are provided as open-source at //eliabntt.github.io/grade-rrSimulation of Dynamic Environments for SLAM

Processing-in-memory (PIM) architectures are emerging to reduce data movement in data-intensive applications. These architectures seek to exploit the same physical devices for both information storage and logic, thereby dwarfing the required data transfer and utilizing the full internal memory bandwidth. Whereas analog PIM utilizes the inherent connectivity of crossbar arrays for approximate matrix-vector multiplication in the analog domain, digital PIM architectures enable bitwise logic operations with massive parallelism across columns of data within memory arrays. Several recent works have extended the computational capabilities of digital PIM architectures towards the full-precision (single-precision floating-point) acceleration of convolutional neural networks (CNNs); yet, they lack a comprehensive comparison to GPUs. In this paper, we examine the potential of digital PIM for CNN acceleration through an updated quantitative comparison with GPUs, supplemented with an analysis of the overall limitations of digital PIM. We begin by investigating the different PIM architectures from a theoretical perspective to understand the underlying performance limitations and improvements compared to state-of-the-art hardware. We then uncover the tradeoffs between the different strategies through a series of benchmarks ranging from memory-bound vectored arithmetic to CNN acceleration. We conclude with insights into the general performance of digital PIM architectures for different data-intensive applications.

The development of Adaptive Cruise Control (ACC) systems aims to enhance the safety and comfort of vehicles by automatically regulating the speed of the vehicle to ensure a safe gap from the preceding vehicle. However, conventional ACC systems are unable to adapt themselves to changing driving conditions and drivers' behavior. To address this limitation, we propose a Long Short-Term Memory (LSTM) based ACC system that can learn from past driving experiences and adapt and predict new situations in real time. The model is constructed based on the real-world highD dataset, acquired from German highways with the assistance of camera-equipped drones. We evaluated the ACC system under aggressive lane changes when the side lane preceding vehicle cut off, forcing the targeted driver to reduce speed. To this end, the proposed system was assessed on a simulated driving environment and compared with a feedforward Artificial Neural Network (ANN) model and Model Predictive Control (MPC) model. The results show that the LSTM-based system is 19.25% more accurate than the ANN model and 5.9% more accurate than the MPC model in terms of predicting future values of subject vehicle acceleration. The simulation is done in Matlab/Simulink environment.

This work investigates the use of a Deep Neural Network (DNN) to perform an estimation of the Weapon Engagement Zone (WEZ) maximum launch range. The WEZ allows the pilot to identify an airspace in which the available missile has a more significant probability of successfully engaging a particular target, i.e., a hypothetical area surrounding an aircraft in which an adversary is vulnerable to a shot. We propose an approach to determine the WEZ of a given missile using 50,000 simulated launches in variate conditions. These simulations are used to train a DNN that can predict the WEZ when the aircraft finds itself on different firing conditions, with a coefficient of determination of 0.99. It provides another procedure concerning preceding research since it employs a non-discretized model, i.e., it considers all directions of the WEZ at once, which has not been done previously. Additionally, the proposed method uses an experimental design that allows for fewer simulation runs, providing faster model training.

北京阿比特科技有限公司