亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One of the most important tasks for ensuring safe autonomous driving systems is accurately detecting road traffic lights and accurately determining how they impact the driver's actions. In various real-world driving situations, a scene may have numerous traffic lights with varying levels of relevance to the driver, and thus, distinguishing and detecting the lights that are relevant to the driver and influence the driver's actions is a critical safety task. This paper proposes a traffic light detection model which focuses on this task by first defining salient lights as the lights that affect the driver's future decisions. We then use this salience property to construct the LAVA Salient Lights Dataset, the first US traffic light dataset with an annotated salience property. Subsequently, we train a Deformable DETR object detection transformer model using Salience-Sensitive Focal Loss to emphasize stronger performance on salient traffic lights, showing that a model trained with this loss function has stronger recall than one trained without.

相關內容

Self-supervised learning (SSL) has emerged as a promising paradigm that presents self-generated supervisory signals to real-world problems, bypassing the extensive manual labeling burden. SSL is especially attractive for unsupervised tasks such as anomaly detection, where labeled anomalies are often nonexistent and costly to obtain. While self-supervised anomaly detection (SSAD) has seen a recent surge of interest, the literature has failed to treat data augmentation as a hyperparameter. Meanwhile, recent works have reported that the choice of augmentation has significant impact on detection performance. In this paper, we introduce ST-SSAD (Self-Tuning Self-Supervised Anomaly Detection), the first systematic approach to SSAD in regards to rigorously tuning augmentation. To this end, our work presents two key contributions. The first is a new unsupervised validation loss that quantifies the alignment between the augmented training data and the (unlabeled) test data. In principle we adopt transduction, quantifying the extent to which augmentation mimics the true anomaly-generating mechanism, in contrast to augmenting data with arbitrary pseudo anomalies without regard to test data. Second, we present new differentiable augmentation functions, allowing data augmentation hyperparameter(s) to be tuned end-to-end via our proposed validation loss. Experiments on two testbeds with semantic class anomalies and subtle industrial defects show that systematically tuning augmentation offers significant performance gains over current practices.

Learning with noisy labels (LNL) is challenging as the model tends to memorize noisy labels, which can lead to overfitting. Many LNL methods detect clean samples by maximizing the similarity between samples in each category, which does not make any assumptions about likely noise sources. However, we often have some knowledge about the potential source(s) of noisy labels. For example, an image mislabeled as a cheetah is more likely a leopard than a hippopotamus due to their visual similarity. Thus, we introduce a new task called Learning with Noisy Labels and noise source distribution Knowledge (LNL+K), which assumes we have some knowledge about likely source(s) of label noise that we can take advantage of. By making this presumption, methods are better equipped to distinguish hard negatives between categories from label noise. In addition, this enables us to explore datasets where the noise may represent the majority of samples, a setting that breaks a critical premise of most methods developed for the LNL task. We explore several baseline LNL+K approaches that integrate noise source knowledge into state-of-the-art LNL methods across three diverse datasets and three types of noise, where we report a 5-15% boost in performance compared with the unadapted methods. Critically, we find that LNL methods do not generalize well in every setting, highlighting the importance of directly exploring our LNL+K task.

Anomaly detection (AD) is a fundamental research problem in machine learning and computer vision, with practical applications in industrial inspection, video surveillance, and medical diagnosis. In medical imaging, AD is especially vital for detecting and diagnosing anomalies that may indicate rare diseases or conditions. However, there is a lack of a universal and fair benchmark for evaluating AD methods on medical images, which hinders the development of more generalized and robust AD methods in this specific domain. To bridge this gap, we introduce a comprehensive evaluation benchmark for assessing anomaly detection methods on medical images. This benchmark encompasses six reorganized datasets from five medical domains (i.e. brain MRI, liver CT, retinal OCT, chest X-ray, and digital histopathology) and three key evaluation metrics, and includes a total of fourteen state-of-the-art AD algorithms. This standardized and well-curated medical benchmark with the well-structured codebase enables comprehensive comparisons among recently proposed anomaly detection methods. It will facilitate the community to conduct a fair comparison and advance the field of AD on medical imaging. More information on BMAD is available in our GitHub repository: //github.com/DorisBao/BMAD

Eye blinking detection in the wild plays an essential role in deception detection, driving fatigue detection, etc. Despite the fact that numerous attempts have already been made, the majority of them have encountered difficulties, such as the derived eye images having different resolutions as the distance between the face and the camera changes; or the requirement of a lightweight detection model to obtain a short inference time in order to perform in real-time. In this research, two problems are addressed: how the eye blinking detection model can learn efficiently from different resolutions of eye pictures in diverse conditions; and how to reduce the size of the detection model for faster inference time. We propose to utilize upsampling and downsampling the input eye images to the same resolution as one potential solution for the first problem, then find out which interpolation method can result in the highest performance of the detection model. For the second problem, although a recent spatiotemporal convolutional neural network used for eye blinking detection has a strong capacity to extract both spatial and temporal characteristics, it remains having a high number of network parameters, leading to high inference time. Therefore, using Depth-wise Separable Convolution rather than conventional convolution layers inside each branch is considered in this paper as a feasible solution.

Change detection (CD) is to decouple object changes (i.e., object missing or appearing) from background changes (i.e., environment variations) like light and season variations in two images captured in the same scene over a long time span, presenting critical applications in disaster management, urban development, etc. In particular, the endless patterns of background changes require detectors to have a high generalization against unseen environment variations, making this task significantly challenging. Recent deep learning-based methods develop novel network architectures or optimization strategies with paired-training examples, which do not handle the generalization issue explicitly and require huge manual pixel-level annotation efforts. In this work, for the first attempt in the CD community, we study the generalization issue of CD from the perspective of data augmentation and develop a novel weakly supervised training algorithm that only needs image-level labels. Different from general augmentation techniques for classification, we propose the background-mixed augmentation that is specifically designed for change detection by augmenting examples under the guidance of a set of background-changing images and letting deep CD models see diverse environment variations. Moreover, we propose the augmented & real data consistency loss that encourages the generalization increase significantly. Our method as a general framework can enhance a wide range of existing deep learning-based detectors. We conduct extensive experiments in two public datasets and enhance four state-of-the-art methods, demonstrating the advantages of our method. We release the code at //github.com/tsingqguo/bgmix.

Self-training is an important technique for solving semi-supervised learning problems. It leverages unlabeled data by generating pseudo-labels and combining them with a limited labeled dataset for training. The effectiveness of self-training heavily relies on the accuracy of these pseudo-labels. In this paper, we introduce doubly robust self-training, a novel semi-supervised algorithm that provably balances between two extremes. When the pseudo-labels are entirely incorrect, our method reduces to a training process solely using labeled data. Conversely, when the pseudo-labels are completely accurate, our method transforms into a training process utilizing all pseudo-labeled data and labeled data, thus increasing the effective sample size. Through empirical evaluations on both the ImageNet dataset for image classification and the nuScenes autonomous driving dataset for 3D object detection, we demonstrate the superiority of the doubly robust loss over the standard self-training baseline.

Neural networks are often biased to spuriously correlated features that provide misleading statistical evidence that does not generalize. This raises an interesting question: ``Does an optimal unbiased functional subnetwork exist in a severely biased network? If so, how to extract such subnetwork?" While empirical evidence has been accumulated about the existence of such unbiased subnetworks, these observations are mainly based on the guidance of ground-truth unbiased samples. Thus, it is unexplored how to discover the optimal subnetworks with biased training datasets in practice. To address this, here we first present our theoretical insight that alerts potential limitations of existing algorithms in exploring unbiased subnetworks in the presence of strong spurious correlations. We then further elucidate the importance of bias-conflicting samples on structure learning. Motivated by these observations, we propose a Debiased Contrastive Weight Pruning (DCWP) algorithm, which probes unbiased subnetworks without expensive group annotations. Experimental results demonstrate that our approach significantly outperforms state-of-the-art debiasing methods despite its considerable reduction in the number of parameters.

A computational workflow, also known as workflow, consists of tasks that must be executed in a specific order to attain a specific goal. Often, in fields such as biology, chemistry, physics, and data science, among others, these workflows are complex and are executed in large-scale, distributed, and heterogeneous computing environments that are prone to failures and performance degradations. Therefore, anomaly detection for workflows is an important paradigm that aims to identify unexpected behavior or errors in workflow execution. This crucial task to improve the reliability of workflow executions must be assisted by machine learning-based techniques. However, such application is limited, in large part, due to the lack of open datasets and benchmarking. To address this gap, we make the following contributions in this paper: (1) we systematically inject anomalies and collect raw execution logs from workflows executing on distributed infrastructures; (2) we summarize the statistics of new datasets, as well as a set of open datasets, and provide insightful analyses; (3) we benchmark unsupervised anomaly detection techniques by converting workflows into both tabular and graph-structured data. Our findings allow us to examine the effectiveness and efficiencies of the benchmark methods and identify potential research opportunities for improvement and generalization. The dataset and benchmark code are available online with MIT License for public usage.

Existing traffic signal control systems rely on oversimplified rule-based methods, and even RL-based methods are often suboptimal and unstable. To address this, we propose a cooperative multi-objective architecture called Multi-Objective Multi-Agent Deep Deterministic Policy Gradient (MOMA-DDPG), which estimates multiple reward terms for traffic signal control optimization using age-decaying weights. Our approach involves two types of agents: one focuses on optimizing local traffic at each intersection, while the other aims to optimize global traffic throughput. We evaluate our method using real-world traffic data collected from an Asian country's traffic cameras. Despite the inclusion of a global agent, our solution remains decentralized as this agent is no longer necessary during the inference stage. Our results demonstrate the effectiveness of MOMA-DDPG, outperforming state-of-the-art methods across all performance metrics. Additionally, our proposed system minimizes both waiting time and carbon emissions. Notably, this paper is the first to link carbon emissions and global agents in traffic signal control.

With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.

北京阿比特科技有限公司