亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The query model has generated considerable interest in both classical and quantum computing communities. Typically, quantum advantages are demonstrated by showcasing a quantum algorithm with a better query complexity compared to its classical counterpart. Exact quantum query algorithms play a pivotal role in developing quantum algorithms. For example, the Deutsch-Jozsa algorithm demonstrated exponential quantum advantages over classical deterministic algorithms. As an important complexity measure, exact quantum query complexity describes the minimum number of queries required to solve a specific problem exactly using a quantum algorithm. In this paper, we consider the exact quantum query complexity of the following two $n$-bit symmetric functions $\text{MOD}_m^n:\{0,1\}^n \rightarrow \{0,...,m-1\}$ and $\text{EXACT}_{k,l}^n:\{0,1\}^n \rightarrow \{0,1\}$, which are defined as $\text{MOD}_m^n(x) = |x| \bmod m$ and $ \text{EXACT}_{k,l}^n(x) = 1$ iff $|x| \in \{k,l\}$, where $|x|$ is the number of $1$'s in $x$. Our results are as follows: i) We present an optimal quantum algorithm for computing $\text{MOD}_m^n$, achieving a query complexity of $\lceil n(1-\frac{1}{m}) \rceil$ for $1 < m \le n$. This settles a conjecture proposed by Cornelissen, Mande, Ozols and de Wolf (2021). Based on this algorithm, we show the exact quantum query complexity of a broad class of symmetric functions that map $\{0,1\}^n$ to a finite set $X$ is less than $n$. ii) When $l-k \ge 2$, we give an optimal exact quantum query algorithm to compute $\text{EXACT}_{k,l}^n$ for the case $k=0$ or $k=1,l=n-1$. This resolves the conjecture proposed by Ambainis, Iraids and Nagaj (2017) partially.

相關內容

Many isomorphism problems for tensors, groups, algebras, and polynomials were recently shown to be equivalent to one another under polynomial-time reductions, prompting the introduction of the complexity class TI (Grochow & Qiao, ITCS '21; SIAM J. Comp., '23). Using the tensorial viewpoint, Grochow & Qiao (CCC '21) then gave moderately exponential-time search- and counting-to-decision reductions for a class of $p$-groups. A significant issue was that the reductions usually incurred a quadratic increase in the length of the tensors involved. When the tensors represent $p$-groups, this corresponds to an increase in the order of the group of the form $|G|^{\Theta(\log |G|)}$, negating any asymptotic gains in the Cayley table model. In this paper, we present a new kind of tensor gadget that allows us to replace those quadratic-length reductions with linear-length ones, yielding the following consequences: 1. Combined with the recent breakthrough $|G|^{O((\log |G|)^{5/6})}$-time isomorphism-test for $p$-groups of class 2 and exponent $p$ (Sun, STOC '23), our reductions extend this runtime to $p$-groups of class $c$ and exponent $p$ where $c<p$. 2. Our reductions show that Sun's algorithm solves several TI-complete problems over $F_p$, such as isomorphism problems for cubic forms, algebras, and tensors, in time $p^{O(n^{1.8} \log p)}$. 3. Polynomial-time search- and counting-to-decision reduction for testing isomorphism of $p$-groups of class $2$ and exponent $p$ in the Cayley table model. This answers questions of Arvind and T\'oran (Bull. EATCS, 2005) for this group class, thought to be one of the hardest cases of Group Isomorphism. 4. If Graph Isomorphism is in P, then testing equivalence of cubic forms and testing isomorphism of algebra over a finite field $F_q$ can both be solved in time $q^{O(n)}$, improving from the brute-force upper bound $q^{O(n^2)}$.

We give a new presentation of the main result of Arunachalam, Bri\"et and Palazuelos (SICOMP'19) and show that quantum query algorithms are characterized by a new class of polynomials which we call Fourier completely bounded polynomials. We conjecture that all such polynomials have an influential variable. This conjecture is weaker than the famous Aaronson-Ambainis (AA) conjecture (Theory of Computing'14), but has the same implications for classical simulation of quantum query algorithms. We prove a new case of the AA conjecture by showing that it holds for homogeneous Fourier completely bounded polynomials. This implies that if the output of $d$-query quantum algorithm is a homogeneous polynomial $p$ of degree $2d$, then it has a variable with influence at least $Var[p]^2$. In addition, we give an alternative proof of the results of Bansal, Sinha and de Wolf (CCC'22 and QIP'23) showing that block-multilinear completely bounded polynomials have influential variables. Our proof is simpler, obtains better constants and does not use randomness.

In the problem of binary quantum channel discrimination with product inputs, the supremum of all type II error exponents for which the optimal type I errors go to zero is equal to the Umegaki channel relative entropy, while the infimum of all type II error exponents for which the optimal type I errors go to one is equal to the infimum of the sandwiched channel R\'enyi $\alpha$-divergences over all $\alpha>1$. We prove the equality of these two threshold values (and therefore the strong converse property for this problem) using a minimax argument based on a newly established continuity property of the sandwiched R\'enyi divergences. Motivated by this, we give a detailed analysis of the continuity properties of various other quantum (channel) R\'enyi divergences, which may be of independent interest.

This article proposes a new information theoretic necessary condition for reconstructing a discrete random variable $X$ based on the knowledge of a set of discrete functions of $X$. The reconstruction condition is derived from the Shannon's Lattice of Information (LoI) \cite{Shannon53} and two entropic metrics proposed respectively by Shannon and Rajski. This theoretical material being relatively unknown and/or dispersed in different references, we provide a complete and synthetic description of the LoI concepts like the total, common and complementary informations with complete proofs. The two entropic metrics definitions and properties are also fully detailled and showed compatible with the LoI structure. A new geometric interpretation of the Lattice structure is then investigated that leads to a new necessary condition for reconstructing the discrete random variable $X$ given a set $\{ X_0$,...,$X_{n-1} \}$ of elements of the lattice generated by $X$. Finally, this condition is derived in five specific examples of reconstruction of $X$ from a set of deterministic functions of $X$: the reconstruction of a symmetric random variable from the knowledge of its sign and of its absolute value, the reconstruction of a binary word from a set of binary linear combinations, the reconstruction of an integer from its prime signature (Fundamental theorem of arithmetics) and from its reminders modulo a set of coprime integers (Chinese reminder theorem), and the reconstruction of the sorting permutation of a list from a set of 2-by-2 comparisons. In each case, the necessary condition is shown compatible with the corresponding well-known results.

Complexity theory typically focuses on the difficulty of solving computational problems using classical inputs and outputs, even with a quantum computer. In the quantum world, it is natural to apply a different notion of complexity, namely the complexity of synthesizing quantum states. We investigate a state-synthesizing counterpart of the class NP, referred to as stateQMA, which is concerned with preparing certain quantum states through a polynomial-time quantum verifier with the aid of a single quantum message from an all-powerful but untrusted prover. This is a subclass of the class stateQIP recently introduced by Rosenthal and Yuen (ITCS 2022), which permits polynomially many interactions between the prover and the verifier. Our main result consists of error reduction of this class and its variants with an exponentially small gap or a bounded space, as well as how this class relates to other fundamental state synthesizing classes, i.e., states generated by uniform polynomial-time quantum circuits (stateBQP) and space-uniform polynomial-space quantum circuits (statePSPACE). Furthermore, we establish that the family of UQMA witnesses, considered as one of the most natural candidates, is in stateQMA. Additionally, we demonstrate that stateQCMA achieves perfect completeness.

The general adversary dual is a powerful tool in quantum computing because it gives a query-optimal bounded-error quantum algorithm for deciding any Boolean function. Unfortunately, the algorithm uses linear qubits in the worst case, and only works if the constraints of the general adversary dual are exactly satisfied. The challenge of improving the algorithm is that it is brittle to arbitrarily small errors since it relies on a reflection over a span of vectors. We overcome this challenge and build a robust dual adversary algorithm that can handle approximately satisfied constraints. As one application of our robust algorithm, we prove that for any Boolean function with polynomially many 1-valued inputs (or in fact a slightly weaker condition) there is a query-optimal algorithm that uses logarithmic qubits. As another application, we prove that numerically derived, approximate solutions to the general adversary dual give a bounded-error quantum algorithm under certain conditions. Further, we show that these conditions empirically hold with reasonable iterations for Boolean functions with small domains. We also develop several tools that may be of independent interest, including a robust approximate spectral gap lemma, a method to compress a general adversary dual solution using the Johnson-Lindenstrauss lemma, and open-source code to find solutions to the general adversary dual.

Computational optimal transport (OT) has recently emerged as a powerful framework with applications in various fields. In this paper we focus on a relaxation of the original OT problem, the entropic OT problem, which allows to implement efficient and practical algorithmic solutions, even in high dimensional settings. This formulation, also known as the Schr\"odinger Bridge problem, notably connects with Stochastic Optimal Control (SOC) and can be solved with the popular Sinkhorn algorithm. In the case of discrete-state spaces, this algorithm is known to have exponential convergence; however, achieving a similar rate of convergence in a more general setting is still an active area of research. In this work, we analyze the convergence of the Sinkhorn algorithm for probability measures defined on the $d$-dimensional torus $\mathbb{T}_L^d$, that admit densities with respect to the Haar measure of $\mathbb{T}_L^d$. In particular, we prove pointwise exponential convergence of Sinkhorn iterates and their gradient. Our proof relies on the connection between these iterates and the evolution along the Hamilton-Jacobi-Bellman equations of value functions obtained from SOC-problems. Our approach is novel in that it is purely probabilistic and relies on coupling by reflection techniques for controlled diffusions on the torus.

Post-quantum security is critical in the quantum era. Quantum computers, along with quantum algorithms, make the standard cryptography based on RSA or ECDSA over FL or Blockchain vulnerable. The implementation of post-quantum cryptography (PQC) over such systems is poorly understood as PQC is still in its standardization phase. In this work, we propose a hybrid approach to employ PQC over blockchain-based FL (BFL), where we combine a stateless signature scheme like Dilithium (or Falcon) with a stateful hash-based signature scheme like the extended Merkle Signature Scheme (XMSS). We propose a linearbased formulaic approach to device role selection mechanisms based on multiple factors to address the performance aspect. Our holistic approach of utilizing a verifiable random function (VRF) to assist in the blockchain consensus mechanism shows the practicality of the proposed approaches. The proposed method and extensive experimental results contribute to enhancing the security and performance aspects of BFL systems.

We study the complexity of randomized computation of integrals depending on a parameter, with integrands from Sobolev spaces. That is, for $r,d_1,d_2\in{\mathbb N}$, $1\le p,q\le \infty$, $D_1= [0,1]^{d_1}$, and $D_2= [0,1]^{d_2}$ we are given $f\in W_p^r(D_1\times D_2)$ and we seek to approximate $$ Sf=\int_{D_2}f(s,t)dt\quad (s\in D_1), $$ with error measured in the $L_q(D_1)$-norm. Our results extend previous work of Heinrich and Sindambiwe (J.\ Complexity, 15 (1999), 317--341) for $p=q=\infty$ and Wiegand (Shaker Verlag, 2006) for $1\le p=q<\infty$. Wiegand's analysis was carried out under the assumption that $W_p^r(D_1\times D_2)$ is continuously embedded in $C(D_1\times D_2)$ (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed -- a stochastic discretization technique. The paper is based on Part I, where vector valued mean computation -- the finite-dimensional counterpart of parametric integration -- was studied. In Part I a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting was solved. Here a further aspect of this problem is settled.

Recently, physics informed neural networks (PINNs) have been explored extensively for solving various forward and inverse problems and facilitating querying applications in fluid mechanics applications. However, work on PINNs for unsteady flows past moving bodies, such as flapping wings is scarce. Earlier studies mostly relied on transferring to a body attached frame of reference which is restrictive towards handling multiple moving bodies or deforming structures. Hence, in the present work, an immersed boundary aware framework has been explored for developing surrogate models for unsteady flows past moving bodies. Specifically, simultaneous pressure recovery and velocity reconstruction from Immersed boundary method (IBM) simulation data has been investigated. While, efficacy of velocity reconstruction has been tested against the fine resolution IBM data, as a step further, the pressure recovered was compared with that of an arbitrary Lagrange Eulerian (ALE) based solver. Under this framework, two PINN variants, (i) a moving-boundary-enabled standard Navier-Stokes based PINN (MB-PINN), and, (ii) a moving-boundary-enabled IBM based PINN (MB-IBM-PINN) have been formulated. A fluid-solid partitioning of the physics losses in MB-IBM-PINN has been allowed, in order to investigate the effects of solid body points while training. This enables MB-IBM-PINN to match with the performance of MB-PINN under certain loss weighting conditions. MB-PINN is found to be superior to MB-IBM-PINN when {\it a priori} knowledge of the solid body position and velocity are available. To improve the data efficiency of MB-PINN, a physics based data sampling technique has also been investigated. It is observed that a suitable combination of physics constraint relaxation and physics based sampling can achieve a model performance comparable to the case of using all the data points, under a fixed training budget.

北京阿比特科技有限公司