亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As the demand of real time computing increases day by day, there is a major paradigm shift in processing platform of real time system from single core to multi-core platform which provides advantages like higher throughput, linear power consumption, efficient utilization of processor cores and high performance per unit cost over the many single core processors unit. Currently available most popular real time schedulers for multi-core domain are partitioned and global scheduling and these schedulers not suitable to efficiently use this multi-core platform efficiently. Although, semi-partitioned algorithms increases utilization bound by using spare capacities left by partitioning via global scheduling, it has a inherent disadvantage of off-line task splitting. Although, semi-partitioned algorithms increases utilization bound by using spare capacities left by partitioning via global scheduling, it has a inherent disadvantage of off-line task splitting. To overcome these problems of multi-core real time scheduling algorithm new dynamic cluster based multi-core real time scheduling algorithm proposed which is hybrid scheduling approach. This paper discuss different multi-core scheduling techniques and comparative analysis of these techniques with the proposed dynamic cluster based real time multi-core scheduling

相關內容

The problem of scheduling unrelated machines has been studied since the inception of algorithmic mechanism design \cite{NR99}. It is a resource allocation problem that entails assigning $m$ tasks to $n$ machines for execution. Machines are regarded as strategic agents who may lie about their execution costs so as to minimize their allocated workload. To address the situation when monetary payment is not an option to compensate the machines' costs, \citeauthor{DBLP:journals/mst/Koutsoupias14} [2014] devised two \textit{truthful} mechanisms, K and P respectively, that achieve an approximation ratio of $\frac{n+1}{2}$ and $n$, for social cost minimization. In addition, no truthful mechanism can achieve an approximation ratio better than $\frac{n+1}{2}$. Hence, mechanism K is optimal. While approximation ratio provides a strong worst-case guarantee, it also limits us to a comprehensive understanding of mechanism performance on various inputs. This paper investigates these two scheduling mechanisms beyond the worst case. We first show that mechanism K achieves a smaller social cost than mechanism P on every input. That is, mechanism K is pointwise better than mechanism P. Next, for each task $j$, when machines' execution costs $t_i^j$ are independent and identically drawn from a task-specific distribution $F^j(t)$, we show that the average-case approximation ratio of mechanism K converges to a constant. This bound is tight for mechanism K. For a better understanding of this distribution dependent constant, on the one hand, we estimate its value by plugging in a few common distributions; on the other, we show that this converging bound improves a known bound \cite{DBLP:conf/aaai/Zhang18} which only captures the single-task setting. Last, we find that the average-case approximation ratio of mechanism P converges to the same constant.

As scene segmentation systems reach visually accurate results, many recent papers focus on making these network architectures faster, smaller and more efficient. In particular, studies often aim at designingreal-time'systems. Achieving this goal is particularly relevant in the context of real-time video understanding for autonomous vehicles, and robots. In this paper, we argue that the commonly used performance metric of mean Intersection over Union (mIoU) does not fully capture the information required to estimate the true performance of these networks when they operate inreal-time'. We propose a change of objective in the segmentation task, and its associated metric that encapsulates this missing information in the following way: We propose to predict the future output segmentation map that will match the future input frame at the time when the network finishes the processing. We introduce the associated latency-aware metric, from which we can determine a ranking. We perform latency timing experiments of some recent networks on different hardware and assess the performances of these networks on our proposed task. We propose improvements to scene segmentation networks to better perform on our task by using multi-frames input and increasing capacity in the initial convolutional layers.

In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.

Microcosm, Hyper-G, and the Web were developed and released after 1989. There were strengths and weaknesses associate with each of these hypertext systems. The architectures of these systems were relatively different from one another. Standing above its competitors, the Web became the largest and most popular information system. This paper analyses the reasons for which the Web became the first successful hypermedia system by looking and evaluating the architecture of the Web, Hyper-G, and Microcosm systems. Three reasons will be given beyond this success with some lessons to learn. Currently, Semantic Web is a recent development of the Web to provide conceptual hypermedia. More importantly, study of the Web with its impact on technical, socio-cultural, and economical agendas is introduced as web science.

Coflow is a network abstraction used to represent communication patterns in data centers. The coflow scheduling problem in large data centers is one of the most important $NP$-hard problems. Many previous studies on coflow scheduling mainly focus on the single-core model. However, with the growth of data centers, this single-core model is no longer sufficient. This paper considers the coflow scheduling problem in heterogeneous parallel networks. The heterogeneous parallel network is an architecture based on multiple network cores running in parallel. In this paper, two polynomial-time approximation algorithms are developed for scheduling divisible and indivisible coflows in heterogeneous parallel networks, respectively. Both algorithms achieve an approximation ratio of $O(\log m/ \log \log m)$ with arbitrary release times.

Multi-camera vehicle tracking is one of the most complicated tasks in Computer Vision as it involves distinct tasks including Vehicle Detection, Tracking, and Re-identification. Despite the challenges, multi-camera vehicle tracking has immense potential in transportation applications including speed, volume, origin-destination (O-D), and routing data generation. Several recent works have addressed the multi-camera tracking problem. However, most of the effort has gone towards improving accuracy on high-quality benchmark datasets while disregarding lower camera resolutions, compression artifacts and the overwhelming amount of computational power and time needed to carry out this task on its edge and thus making it prohibitive for large-scale and real-time deployment. Therefore, in this work we shed light on practical issues that should be addressed for the design of a multi-camera tracking system to provide actionable and timely insights. Moreover, we propose a real-time city-scale multi-camera vehicle tracking system that compares favorably to computationally intensive alternatives and handles real-world, low-resolution CCTV instead of idealized and curated video streams. To show its effectiveness, in addition to integration into the Regional Integrated Transportation Information System (RITIS), we participated in the 2021 NVIDIA AI City multi-camera tracking challenge and our method is ranked among the top five performers on the public leaderboard.

Integer programs provide a powerful abstraction for representing a wide range of real-world scheduling problems. Despite their ability to model general scheduling problems, solving large-scale integer programs (IP) remains a computational challenge in practice. The incorporation of more complex objectives such as robustness to disruptions further exacerbates the computational challenge. We present NICE (Neural network IP Coefficient Extraction), a novel technique that combines reinforcement learning and integer programming to tackle the problem of robust scheduling. More specifically, NICE uses reinforcement learning to approximately represent complex objectives in an integer programming formulation. We use NICE to determine assignments of pilots to a flight crew schedule so as to reduce the impact of disruptions. We compare NICE with (1) a baseline integer programming formulation that produces a feasible crew schedule, and (2) a robust integer programming formulation that explicitly tries to minimize the impact of disruptions. Our experiments show that, across a variety of scenarios, NICE produces schedules resulting in 33% to 48% fewer disruptions than the baseline formulation. Moreover, in more severely constrained scheduling scenarios in which the robust integer program fails to produce a schedule within 90 minutes, NICE is able to build robust schedules in less than 2 seconds on average.

Task graphs provide a simple way to describe scientific workflows (sets of tasks with dependencies) that can be executed on both HPC clusters and in the cloud. An important aspect of executing such graphs is the used scheduling algorithm. Many scheduling heuristics have been proposed in existing works; nevertheless, they are often tested in oversimplified environments. We provide an extensible simulation environment designed for prototyping and benchmarking task schedulers, which contains implementations of various scheduling algorithms and is open-sourced, in order to be fully reproducible. We use this environment to perform a comprehensive analysis of workflow scheduling algorithms with a focus on quantifying the effect of scheduling challenges that have so far been mostly neglected, such as delays between scheduler invocations or partially unknown task durations. Our results indicate that network models used by many previous works might produce results that are off by an order of magnitude in comparison to a more realistic model. Additionally, we show that certain implementation details of scheduling algorithms which are often neglected can have a large effect on the scheduler's performance, and they should thus be described in great detail to enable proper evaluation.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司