In this paper, we present a conforming discontinuous Galerkin (CDG) finite element method for Brinkman equations. The velocity stabilizer is removed by employing the higher degree polynomials to compute the weak gradient. The theoretical analysis shows that the CDG method is actually stable and accurate for the Brinkman equations. Optimal order error estimates are established in $H^1$ and $L^2$ norm. Finally, numerical experiments verify the stability and accuracy of the CDG numerical scheme.
In this paper, we propose a new deep learning method, named finite volume method (DFVM) to solve high-dimension partial differential equations (PDEs). The key idea of DFVM is that we construct a new loss function under the framework of the finite volume method. The weak formulation makes DFVM more feasible to solve general high dimensional PDEs defined on arbitrarily shaped domains. Numerical solutions obtained by DFVM also enjoy physical conservation property in the control volume of each sampling point, which is not available in other existing deep learning methods. Numerical results illustrate that DFVM not only reduces the computation cost but also obtains more accurate approximate solutions. Specifically, for high-dimensional linear and nonlinear elliptic PDEs, DFVM provides better approximations than DGM and WAN, by one order of magnitude. The relative error obtained by DFVM is slightly smaller than that obtained by PINN, but the computation cost of DFVM is an order of magnitude less than that of the PINN. For the time-dependent Black-Scholes equation, DFVM gives better approximations than PINN, by one order of magnitude.
An adaptive modified weak Galerkin method (AmWG) for an elliptic problem is studied in this paper, in addition to its convergence and optimality. The modified weak Galerkin bilinear form is simplified without the need of the skeletal variable, and the approximation space is chosen as the discontinuous polynomial space as in the discontinuous Galerkin method. Upon a reliable residual-based a posteriori error estimator, an adaptive algorithm is proposed together with its convergence and quasi-optimality proved for the lowest order case. The primary tool is to bridge the connection between the modified weak Galerkin method and the Crouzeix-Raviart nonconforming finite element. Unlike the traditional convergence analysis for methods with a discontinuous polynomial approximation space, the convergence of AmWG is penalty parameter free. Numerical results are presented to support the theoretical results.
We present a rigorous theoretical analysis of the convergence rate of the deep mixed residual method (MIM) when applied to a linear elliptic equation with various types of boundary conditions. The MIM method has been proposed as a more effective numerical approximation method compared to the deep Galerkin method (DGM) and deep Ritz method (DRM) in various cases. Our analysis shows that MIM outperforms DRM and deep Galerkin method for weak solution (DGMW) in the Dirichlet case due to its ability to enforce the boundary condition. However, for the Neumann and Robin cases, MIM demonstrates similar performance to the other methods. Our results provides valuable insights into the strengths of MIM and its comparative performance in solving linear elliptic equations with different boundary conditions.
In this paper, we present a novel stochastic normal map-based algorithm ($\mathsf{norM}\text{-}\mathsf{SGD}$) for nonconvex composite-type optimization problems and discuss its convergence properties. Using a time window-based strategy, we first analyze the global convergence behavior of $\mathsf{norM}\text{-}\mathsf{SGD}$ and it is shown that every accumulation point of the generated sequence of iterates $\{\boldsymbol{x}^k\}_k$ corresponds to a stationary point almost surely and in an expectation sense. The obtained results hold under standard assumptions and extend the more limited convergence guarantees of the basic proximal stochastic gradient method. In addition, based on the well-known Kurdyka-{\L}ojasiewicz (KL) analysis framework, we provide novel point-wise convergence results for the iterates $\{\boldsymbol{x}^k\}_k$ and derive convergence rates that depend on the underlying KL exponent $\boldsymbol{\theta}$ and the step size dynamics $\{\alpha_k\}_k$. Specifically, for the popular step size scheme $\alpha_k=\mathcal{O}(1/k^\gamma)$, $\gamma \in (\frac23,1]$, (almost sure) rates of the form $\|\boldsymbol{x}^k-\boldsymbol{x}^*\| = \mathcal{O}(1/k^p)$, $p \in (0,\frac12)$, can be established. The obtained rates are faster than related and existing convergence rates for $\mathsf{SGD}$ and improve on the non-asymptotic complexity bounds for $\mathsf{norM}\text{-}\mathsf{SGD}$.
This paper provides an error estimate for the u-series decomposition of the Coulomb interaction in molecular dynamics simulations. We show that the number of truncated Gaussians $M$ in the u-series and the base of interpolation nodes $b$ in the bilateral serial approximation are two key parameters for the algorithm accuracy, and that the errors converge as $\mathcal{O}(b^{-M})$ for the energy and $\mathcal{O}(b^{-3M})$ for the force. Error bounds due to numerical quadrature and cutoff in both the electrostatic energy and forces are obtained. Closed-form formulae are also provided, which are useful in the parameter setup for simulations under a given accuracy. The results are verified by analyzing the errors of two practical systems.
We propose a novel spectral method for the Allen--Cahn equation on spheres that does not necessarily require quadrature exactness assumptions. Instead of certain exactness degrees, we employ a restricted isometry relation based on the Marcinkiewicz--Zygmund system of quadrature rules to quantify the quadrature error of polynomial integrands. The new method imposes only some conditions on the polynomial degree of numerical solutions to derive the maximum principle and energy stability, and thus, differs substantially from existing methods in the literature that often rely on strict conditions on the time stepping size, Lipschitz property of the nonlinear term, or $L^{\infty}$ boundedness of numerical solutions. Moreover, the new method is suitable for long-time simulations because the time stepping size is independent of the diffusion coefficient in the equation. Inspired by the effective maximum principle recently proposed by Li (Ann. Appl. Math., 37(2): 131--290, 2021), we develop an almost sharp maximum principle that allows controllable deviation of numerical solutions from the sharp bound. Further, we show that the new method is energy stable and equivalent to the Galerkin method if the quadrature rule exhibits sufficient exactness degrees. In addition, we propose an energy-stable mixed-quadrature scheme which works well even with randomly sampled initial condition data. We validate the theoretical results about the energy stability and the almost sharp maximum principle by numerical experiments on the 2-sphere $\mathbb{S}^2$.
We study stochastic zero-sum games on graphs, which are prevalent tools to model decision-making in presence of an antagonistic opponent in a random environment. In this setting, an important question is the one of strategy complexity: what kinds of strategies are sufficient or required to play optimally (e.g., randomization or memory requirements)? Our contributions further the understanding of arena-independent finite-memory (AIFM) determinacy, i.e., the study of objectives for which memory is needed, but in a way that only depends on limited parameters of the game graphs. First, we show that objectives for which pure AIFM strategies suffice to play optimally also admit pure AIFM subgame perfect strategies. Second, we show that we can reduce the study of objectives for which pure AIFM strategies suffice in two-player stochastic games to the easier study of one-player stochastic games (i.e., Markov decision processes). Third, we characterize the sufficiency of AIFM strategies through two intuitive properties of objectives. This work extends a line of research started on deterministic games to stochastic ones.
This paper presents stochastic virtual element methods for propagating uncertainty in linear elastic stochastic problems. We first derive stochastic virtual element equations for 2D and 3D linear elastic problems that may involve uncertainties in material properties, external forces, etc. A stochastic virtual element space that couples the deterministic virtual element space and the stochastic space is constructed for this purpose and used to approximate the unknown stochastic solution. Two numerical frameworks are then developed to solve the derived stochastic virtual element equations, including a Polynomial Chaos approximation based approach and a weakly intrusive approximation based approach. In the PC based framework, the stochastic solution is approximated using the Polynomial Chaos basis and solved via an augmented deterministic virtual element equation that is generated by applying the stochastic Galerkin procedure to the original stochastic virtual element equation. In the weakly intrusive approximation based framework, the stochastic solution is approximated by a summation of a set of products of random variables and deterministic vectors, where the deterministic vectors are solved via converting the original stochastic problem to deterministic virtual element equations by the stochastic Galerkin approach, and the random variables are solved via converting the original stochastic problem to one-dimensional stochastic algebraic equations by the classical Galerkin procedure. This method avoids the curse of dimensionality of high-dimensional stochastic problems successfully since all random inputs are embedded into one-dimensional stochastic algebraic equations whose computational effort weakly depends on the stochastic dimension. Numerical results on 2D and 3D problems with low- and high-dimensional random inputs demonstrate the good performance of the proposed methods.
It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method.
In this paper, we present a comprehensive study on the convergence properties of Adam-family methods for nonsmooth optimization, especially in the training of nonsmooth neural networks. We introduce a novel two-timescale framework that adopts a two-timescale updating scheme, and prove its convergence properties under mild assumptions. Our proposed framework encompasses various popular Adam-family methods, providing convergence guarantees for these methods in training nonsmooth neural networks. Furthermore, we develop stochastic subgradient methods that incorporate gradient clipping techniques for training nonsmooth neural networks with heavy-tailed noise. Through our framework, we show that our proposed methods converge even when the evaluation noises are only assumed to be integrable. Extensive numerical experiments demonstrate the high efficiency and robustness of our proposed methods.