亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a novel approach for monocular novel view synthesis of dynamic scenes. Existing techniques already show impressive rendering quality but tend to focus on optimization within a single scene without leveraging prior knowledge. This limitation has been primarily attributed to the lack of datasets of dynamic scenes available for training and the diversity of scene dynamics. Our method FlowIBR circumvents these issues by integrating a neural image-based rendering method, pre-trained on a large corpus of widely available static scenes, with a per-scene optimized scene flow field. Utilizing this flow field, we bend the camera rays to counteract the scene dynamics, thereby presenting the dynamic scene as if it were static to the rendering network. The proposed method reduces per-scene optimization time by an order of magnitude, achieving comparable results to existing methods - all on a single consumer-grade GPU.

相關內容

We propose a novel anomaly detection method for echocardiogram videos. The introduced method takes advantage of the periodic nature of the heart cycle to learn three variants of a variational latent trajectory model (TVAE). While the first two variants (TVAE-C and TVAE-R) model strict periodic movements of the heart, the third (TVAE-S) is more general and allows shifts in the spatial representation throughout the video. All models are trained on the healthy samples of a novel in-house dataset of infant echocardiogram videos consisting of multiple chamber views to learn a normative prior of the healthy population. During inference, maximum a posteriori (MAP) based anomaly detection is performed to detect out-of-distribution samples in our dataset. The proposed method reliably identifies severe congenital heart defects, such as Ebstein's Anomaly or Shone-complex. Moreover, it achieves superior performance over MAP-based anomaly detection with standard variational autoencoders when detecting pulmonary hypertension and right ventricular dilation. Finally, we demonstrate that the proposed method enables interpretable explanations of its output through heatmaps highlighting the regions corresponding to anomalous heart structures.

Depth estimation from monocular images is pivotal for real-world visual perception systems. While current learning-based depth estimation models train and test on meticulously curated data, they often overlook out-of-distribution (OoD) situations. Yet, in practical settings -- especially safety-critical ones like autonomous driving -- common corruptions can arise. Addressing this oversight, we introduce a comprehensive robustness test suite, RoboDepth, encompassing 18 corruptions spanning three categories: i) weather and lighting conditions; ii) sensor failures and movement; and iii) data processing anomalies. We subsequently benchmark 42 depth estimation models across indoor and outdoor scenes to assess their resilience to these corruptions. Our findings underscore that, in the absence of a dedicated robustness evaluation framework, many leading depth estimation models may be susceptible to typical corruptions. We delve into design considerations for crafting more robust depth estimation models, touching upon pre-training, augmentation, modality, model capacity, and learning paradigms. We anticipate our benchmark will establish a foundational platform for advancing robust OoD depth estimation.

We present a novel approach to multilingual audio-visual speech recognition tasks by introducing a single model on a multilingual dataset. Motivated by a human cognitive system where humans can intuitively distinguish different languages without any conscious effort or guidance, we propose a model that can capture which language is given as an input speech by distinguishing the inherent similarities and differences between languages. To do so, we design a prompt fine-tuning technique into the largely pre-trained audio-visual representation model so that the network can recognize the language class as well as the speech with the corresponding language. Our work contributes to developing robust and efficient multilingual audio-visual speech recognition systems, reducing the need for language-specific models.

We present a novel language-driven ordering alignment method for ordinal classification. The labels in ordinal classification contain additional ordering relations, making them prone to overfitting when relying solely on training data. Recent developments in pre-trained vision-language models inspire us to leverage the rich ordinal priors in human language by converting the original task into a visionlanguage alignment task. Consequently, we propose L2RCLIP, which fully utilizes the language priors from two perspectives. First, we introduce a complementary prompt tuning technique called RankFormer, designed to enhance the ordering relation of original rank prompts. It employs token-level attention with residual-style prompt blending in the word embedding space. Second, to further incorporate language priors, we revisit the approximate bound optimization of vanilla cross-entropy loss and restructure it within the cross-modal embedding space. Consequently, we propose a cross-modal ordinal pairwise loss to refine the CLIP feature space, where texts and images maintain both semantic alignment and ordering alignment. Extensive experiments on three ordinal classification tasks, including facial age estimation, historical color image (HCI) classification, and aesthetic assessment demonstrate its promising performance. The code is available at //github.com/raywang335/L2RCLIP.

The advancement of visual intelligence is intrinsically tethered to the availability of large-scale data. In parallel, generative Artificial Intelligence (AI) has unlocked the potential to create synthetic images that closely resemble real-world photographs. This prompts a compelling inquiry: how much visual intelligence could benefit from the advance of generative AI? This paper explores the innovative concept of harnessing these AI-generated images as new data sources, reshaping traditional modeling paradigms in visual intelligence. In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability, the rapid generation of vast datasets, and the effortless simulation of edge cases. Built on the success of generative AI models, we examine the potential of their generated data in a range of applications, from training machine learning models to simulating scenarios for computational modeling, testing, and validation. We probe the technological foundations that support this groundbreaking use of generative AI, engaging in an in-depth discussion on the ethical, legal, and practical considerations that accompany this transformative paradigm shift. Through an exhaustive survey of current technologies and applications, this paper presents a comprehensive view of the synthetic era in visual intelligence. A project associated with this paper can be found at //github.com/mwxely/AIGS .

Vertical Federated Learning (VFL) has gained increasing attention as a novel training paradigm that integrates sample alignment and feature union. However, existing VFL methods face challenges when dealing with heterogeneous local models among participants, which affects optimization convergence and generalization. To address this issue, this paper proposes a novel approach called Vertical Federated learning for training Multi-parties Heterogeneous models (VFedMH). VFedMH focuses on aggregating the embeddings of each participant's knowledge instead of intermediate results during forward propagation. The active party, who possesses labels and features of the sample, in VFedMH securely aggregates local embeddings to obtain global knowledge embeddings, and sends them to passive parties. The passive parties, who own only features of the sample, then utilize the global embeddings to propagate forward on their local heterogeneous networks. However, the passive party does not own the labels, so the local model gradient cannot be calculated locally. To overcome this limitation, the active party assists the passive party in computing its local heterogeneous model gradients. Then, each participant trains their local model using the heterogeneous model gradients. The objective is to minimize the loss value of their respective local heterogeneous models. Additionally, the paper provides a theoretical analysis of VFedMH's convergence performance. Extensive experiments are conducted to demonstrate that VFedMH can simultaneously train multiple heterogeneous models with heterogeneous optimization and outperform some recent methods in model performance.

Neural Radiance Fields (NeRF) is a novel implicit 3D reconstruction method that shows immense potential and has been gaining increasing attention. It enables the reconstruction of 3D scenes solely from a set of photographs. However, its real-time rendering capability, especially for interactive real-time rendering of large-scale scenes, still has significant limitations. To address these challenges, in this paper, we propose a novel neural rendering system called UE4-NeRF, specifically designed for real-time rendering of large-scale scenes. We partitioned each large scene into different sub-NeRFs. In order to represent the partitioned independent scene, we initialize polygonal meshes by constructing multiple regular octahedra within the scene and the vertices of the polygonal faces are continuously optimized during the training process. Drawing inspiration from Level of Detail (LOD) techniques, we trained meshes of varying levels of detail for different observation levels. Our approach combines with the rasterization pipeline in Unreal Engine 4 (UE4), achieving real-time rendering of large-scale scenes at 4K resolution with a frame rate of up to 43 FPS. Rendering within UE4 also facilitates scene editing in subsequent stages. Furthermore, through experiments, we have demonstrated that our method achieves rendering quality comparable to state-of-the-art approaches. Project page: //jamchaos.github.io/UE4-NeRF/.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

北京阿比特科技有限公司