亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Narrowband Internet of Things (NB-IoT) is a cellular technology introduced by the Third Generation Partnership Project (3GPP) to provide connectivity to a large number of low-cost IoT devices with strict energy consumption limitations. However, in an ultra-dense small cell network employing NB-IoT technology, inter-cell interference can be a problem, raising serious concerns regarding the performance of NB-IoT, particularly in uplink transmission. Thus, a power allocation method must be established to analyze uplink performance, control and predict inter-cell interference, and avoid excessive energy waste during transmission. Unfortunately, standard power allocation techniques become inappropriate as their computational complexity grows in an ultra-dense environment. Furthermore, the performance of NB-IoT is strongly dependent on the traffic generated by IoT devices. In order to tackle these challenges, we provide a consistent and distributed uplink power allocation solution under spatiotemporal fluctuation incorporating NB-IoT features such as the number of repetitions and the data rate, as well as the IoT device's energy budget, packet size, and traffic intensity, by leveraging stochastic geometry analysis and Mean-Field Game (MFG) theory. The effectiveness of our approach is illustrated via extensive numerical analysis, and many insightful discussions are presented.

相關內容

The feasibility of performing airborne and ground manipulation, perception, and reconnaissance using wheeled rovers, unmanned aerial vehicles, CubeSats, SmallSats and more have been evaluated before. Among all of these solutions, balloon-based systems possess merits that make them extremely attractive, e.g., a simple operation mechanism and endured operation time. However, there are many hurdles to overcome to achieve robust loitering performance in balloon-based applications. We attempt to identify design and control challenges, and propose a novel robotic platform that allows for the application of balloons in the reconnaissance and perception of Mars craters. This work briefly covers our suggested actuation and Model Predictive Control design framework for steering such balloon systems. We propose the coordinated servoing of multiple unmanned ground vehicles (UGVs) to regulate tension forces in a cable-driven balloon to which an underactuated hanging payload is attached.

Many future technologies rely on neural networks, but verifying the correctness of their behavior remains a major challenge. It is known that neural networks can be fragile in the presence of even small input perturbations, yielding unpredictable outputs. The verification of neural networks is therefore vital to their adoption, and a number of approaches have been proposed in recent years. In this paper we focus on semidefinite programming (SDP) based techniques for neural network verification, which are particularly attractive because they can encode expressive behaviors while ensuring a polynomial time decision. Our starting point is the DeepSDP framework proposed by Fazlyab et al, which uses quadratic constraints to abstract the verification problem into a large-scale SDP. When the size of the neural network grows, however, solving this SDP quickly becomes intractable. Our key observation is that by leveraging chordal sparsity and specific parametrizations of DeepSDP, we can decompose the primary computational bottleneck of DeepSDP -- a large linear matrix inequality (LMI) -- into an equivalent collection of smaller LMIs. Our parametrization admits a tunable parameter, allowing us to trade-off efficiency and accuracy in the verification procedure. We call our formulation Chordal-DeepSDP, and provide experimental evaluation to show that it can: (1) effectively increase accuracy with the tunable parameter and (2) outperform DeepSDP on deeper networks.

This paper focuses on improving the resource allocation algorithm in terms of packet delivery ratio (PDR), i.e., the number of successfully received packets sent by end devices (EDs) in a long-range wide-area network (LoRaWAN). Setting the transmission parameters significantly affects the PDR. Employing reinforcement learning (RL), we propose a resource allocation algorithm that enables the EDs to configure their transmission parameters in a distributed manner. We model the resource allocation problem as a multi-armed bandit (MAB) and then address it by proposing a two-phase algorithm named MIX-MAB, which consists of the exponential weights for exploration and exploitation (EXP3) and successive elimination (SE) algorithms. We evaluate the MIX-MAB performance through simulation results and compare it with other existing approaches. Numerical results show that the proposed solution performs better than the existing schemes in terms of convergence time and PDR.

Abstract reasoning refers to the ability to analyze information, discover rules at an intangible level, and solve problems in innovative ways. Raven's Progressive Matrices (RPM) test is typically used to examine the capability of abstract reasoning. The subject is asked to identify the correct choice from the answer set to fill the missing panel at the bottom right of RPM (e.g., a 3$\times$3 matrix), following the underlying rules inside the matrix. Recent studies, taking advantage of Convolutional Neural Networks (CNNs), have achieved encouraging progress to accomplish the RPM test. However, they partly ignore necessary inductive biases of RPM solver, such as order sensitivity within each row/column and incremental rule induction. To address this problem, in this paper we propose a Stratified Rule-Aware Network (SRAN) to generate the rule embeddings for two input sequences. Our SRAN learns multiple granularity rule embeddings at different levels, and incrementally integrates the stratified embedding flows through a gated fusion module. With the help of embeddings, a rule similarity metric is applied to guarantee that SRAN can not only be trained using a tuplet loss but also infer the best answer efficiently. We further point out the severe defects existing in the popular RAVEN dataset for RPM test, which prevent from the fair evaluation of the abstract reasoning ability. To fix the defects, we propose an answer set generation algorithm called Attribute Bisection Tree (ABT), forming an improved dataset named Impartial-RAVEN (I-RAVEN for short). Extensive experiments are conducted on both PGM and I-RAVEN datasets, showing that our SRAN outperforms the state-of-the-art models by a considerable margin.

When neural network model and data are outsourced to cloud server for inference, it is desired to preserve the confidentiality of model and data as the involved parties (i.e., cloud server, model providing client and data providing client) may not trust mutually. Solutions were proposed based on multi-party computation, trusted execution environment (TEE) and leveled or fully homomorphic encryption (LHE/FHE), but their limitations hamper practical application. We propose a new framework based on synergistic integration of LHE and TEE, which enables collaboration among mutually-untrusted three parties, while minimizing the involvement of (relatively) resource-constrained TEE and allowing the full utilization of the untrusted but more resource-rich part of server. We also propose a generic and efficient LHE-based inference scheme as an important performance-determining component of the framework. We implemented/evaluated the proposed system on a moderate platform and show that, our proposed scheme is more applicable/scalable to various settings, and has better performance, compared to the state-of-the-art LHE-based solutions.

Preservation of privacy has been a serious concern with the increasing use of IoT-assisted smart systems and their ubiquitous smart sensors. To solve the issue, the smart systems are being trained to depend more on aggregated data instead of directly using raw data. However, most of the existing strategies for privacy-preserving data aggregation, either depend on computation-intensive Homomorphic Encryption based operations or communication-intensive collaborative mechanisms. Unfortunately, none of the approaches are directly suitable for a resource-constrained IoT system. In this work, we leverage the concurrent-transmission-based communication technology to efficiently realize a Multi-Party Computation (MPC) based strategy, the well-known Shamir's Secret Sharing (SSS), and optimize the same to make it suitable for real-world IoT systems.

Reconfigurable intelligent surface (RIS) can effectively control the wavefront of the impinging signals and has emerged as a cost-effective promising solution to improve the spectrum and energy efficiency of wireless systems. Most existing researches on RIS assume that the hardware operations are perfect. However, both physical transceiver and RIS suffer from inevitable hardware impairments in practice, which can lead to severe system performance degradation and increase the complexity of beamforming optimization. Consequently, the existing researches on RIS, including channel estimation, beamforming optimization, spectrum and energy efficiency analysis, etc., cannot directly apply to the case of hardware impairments. In this paper, by taking hardware impairments into consideration, we conduct the joint transmit and reflect beamforming optimization, and reevaluate the system performance. First, we characterize the closed-form estimators of direct and cascaded channels in both single-user and multi-user cases, and analyze the impact of hardware impairments on channel estimation accuracy. Then, the optimal transmit beamforming solution is derived, and a gradient descent method-based algorithm is also proposed to optimize the reflect beamforming. Moreover, we analyze the three types of asymptotic channel capacities with respect to the transmit power, the antenna number, and the reflecting element number. Finally, in terms of the system energy consumption, we analyze the power scaling law and the energy efficiency. Our experimental results also reveal an encouraging phenomenon that the RIS-assisted wireless system with massive reflecting elements can achieve both high spectrum and energy efficiency without the need for massive antennas and without allocating too many resources to optimize the reflect beamforming.

The accurate numerical solution of partial differential equations is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving partial differential equations governing the evolution of high dimensional probability distributions. Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters, which are adapted dynamically during the evolution to optimally reflect the dynamics of the density. For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions in regimes inaccessible to traditional computational approaches.

Rate splitting (RS) systems can better deal with imperfect channel state information at the transmitter (CSIT) than conventional approaches. However, this requires an appropriate power allocation that often has a high computational complexity, which might be inadequate for practical and large systems. To this end, adaptive power allocation techniques can provide good performance with low computational cost. This work presents novel robust and adaptive power allocation technique for RS-based multiuser multiple-input multiple-output (MU-MIMO) systems. In particular, we develop a robust adaptive power allocation based on stochastic gradient learning and the minimization of the mean-square error between the transmitted symbols of the RS system and the received signal. The proposed robust power allocation strategy incorporates knowledge of the variance of the channel errors to deal with imperfect CSIT and adjust power levels in the presence of uncertainty. An analysis of the convexity and stability of the proposed power allocation algorithms is provided, together with a study of their computational complexity and theoretical bounds relating the power allocation strategies. Numerical results show that the sum-rate of an RS system with adaptive power allocation outperforms RS and conventional MU-MIMO systems under imperfect CSIT. %\vspace{-0.75em}

In this paper we propose a solution strategy for the Cahn-Larch\'e equations, which is a model for linearized elasticity in a medium with two elastic phases that evolve subject to a Ginzburg-Landau type energy functional. The system can be seen as a combination of the Cahn-Hilliard regularized interface equation and linearized elasticity, and is non-linearly coupled, has a fourth order term that comes from the Cahn-Hilliard subsystem, and is non-convex and nonlinear in both the phase-field and displacement variables. We propose a novel semi-implicit discretization in time that uses a standard convex-concave splitting method of the nonlinear double-well potential, as well as special treatment to the elastic energy. We show that the resulting discrete system is equivalent to a convex minimization problem, and propose and prove the convergence of alternating minimization applied to it. Finally, we present numerical experiments that show the robustness and effectiveness of both alternating minimization and the monolithic Newton method applied to the newly proposed discrete system of equations. We compare it to a system of equations that has been discretized with a standard convex-concave splitting of the double-well potential, and implicit evaluations of the elasticity contributions and show that the newly proposed discrete system is better conditioned for linearization techniques.

北京阿比特科技有限公司