亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a high-order semi-implicit (SI) asymptotic preserving (AP) and divergence-free finite difference weighted essentially nonoscillatory (WENO) scheme is proposed for magnetohydrodynamic (MHD) equations. We consider the sonic Mach number $\varepsilon$ ranging from $0$ to $\mathcal{O}(1)$. High-order accuracy in time is obtained by SI implicit-explicit Runge-Kutta (IMEX-RK) time discretization. High-order accuracy in space is achieved by finite difference WENO schemes with characteristic-wise reconstructions. A constrained transport method is applied to maintain a discrete divergence-free condition. We formally prove that the scheme is AP. Asymptotic accuracy (AA) in the incompressible MHD limit is obtained if the implicit part of the SI IMEX-RK scheme is stiffly accurate. Numerical experiments are provided to validate the AP, AA, and divergence-free properties of our proposed approach. Besides, the scheme can well capture discontinuities such as shocks in an essentially non-oscillatory fashion in the compressible regime, while it is also a good incompressible solver with uniform large-time step conditions in the low sonic Mach limit.

相關內容

The Keller-Segel-Navier-Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial cell density mass is below $2\pi$ there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality. Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy \emph{a priori} bounds as well as lower and $L^1(\Omega)$ bounds for the cell and chemoattractant densities. In particular, this latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures. Our findings show that the existence threshold value $2\pi$ encountered for the cell density mass may not be optimal and hence it is conjectured that the critical threshold value $4\pi$ may be inherited from the fluid-free Keller-Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.

We study the classical scheduling problem on parallel machines %with precedence constraints where the precedence graph has the bounded depth $h$. Our goal is to minimize the maximum completion time. We focus on developing approximation algorithms that use only sublinear space or sublinear time. We develop the first one-pass streaming approximation schemes using sublinear space when all jobs' processing times differ no more than a constant factor $c$ and the number of machines $m$ is at most $\tfrac {2n \epsilon}{3 h c }$. This is so far the best approximation we can have in terms of $m$, since no polynomial time approximation better than $\tfrac{4}{3}$ exists when $m = \tfrac{n}{3}$ unless P=NP. %the problem cannot be approximated within a factor of $\tfrac{4}{3}$ when $m = \tfrac{n}{3}$ even if all jobs have equal processing time. The algorithms are then extended to the more general problem where the largest $\alpha n$ jobs have no more than $c$ factor difference. % for some constant $0 < \alpha \le 1$. We also develop the first sublinear time algorithms for both problems. For the more general problem, when $ m \le \tfrac { \alpha n \epsilon}{20 c^2 \cdot h } $, our algorithm is a randomized $(1+\epsilon)$-approximation scheme that runs in sublinear time. This work not only provides an algorithmic solution to the studied problem under big data % and cloud computing environment, but also gives a methodological framework for designing sublinear approximation algorithms for other scheduling problems.

Safety in the automotive domain is a well-known topic, which has been in constant development in the past years. The complexity of new systems that add more advanced components in each function has opened new trends that have to be covered from the safety perspective. In this case, not only specifications and requirements have to be covered but also scenarios, which cover all relevant information of the vehicle environment. Many of them are not yet still sufficient defined or considered. In this context, Safety of the Intended Functionality (SOTIF) appears to ensure the system when it might fail because of technological shortcomings or misuses by users. An identification of the plausibly insufficiencies of ADAS/ADS functions has to be done to discover the potential triggering conditions that can lead to these unknown scenarios, which might effect a hazardous behaviour. The main goal of this publication is the definition of an use case to identify these triggering conditions that have been applied to the collision avoidance function implemented in our self-developed mobile Hardware-in-Loop (HiL) platform.

We propose a matrix-free solver for the numerical solution of the cardiac electrophysiology model consisting of the monodomain nonlinear reaction-diffusion equation coupled with a system of ordinary differential equations for the ionic species. Our numerical approximation is based on the high-order Spectral Element Method (SEM) to achieve accurate numerical discretization while employing a much smaller number of Degrees of Freedom than first-order Finite Elements. We combine vectorization with sum-factorization, thus allowing for a very efficient use of high-order polynomials in a high performance computing framework. We validate the effectiveness of our matrix-free solver in a variety of applications and perform different electrophysiological simulations ranging from a simple slab of cardiac tissue to a realistic four-chamber heart geometry. We compare SEM to SEM with Numerical Integration (SEM-NI), showing that they provide comparable results in terms of accuracy and efficiency. In both cases, increasing the local polynomial degree $p$ leads to better numerical results and smaller computational times than reducing the mesh size $h$. We also implement a matrix-free Geometric Multigrid preconditioner that results in a comparable number of linear solver iterations with respect to a state-of-the-art matrix-based Algebraic Multigrid preconditioner. As a matter of fact, the matrix-free solver proposed here yields up to 45$\times$ speed-up with respect to a conventional matrix-based solver.

The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. This method uses a finite element (FE) method to approximate the stresses and forces on a structural mesh and a finite difference (FD) method to approximate the momentum of the entire fluid-structure system on a Cartesian grid. The fundamental approach used by this method follows the immersed boundary framework for modeling fluid-structure interaction (FSI), in which a force spreading operator prolongs structural forces to a Cartesian grid, and a velocity interpolation operator restricts a velocity field defined on that grid back onto the structural mesh. Force spreading and velocity interpolation both require projecting data onto the finite element space. Consequently, evaluating either coupling operator requires solving a matrix equation at every time step. Mass lumping, in which the projection matrices are replaced by diagonal approximations, has the potential to accelerate this method considerably. Constructing the coupling operators also requires determining the locations on the structure mesh where the forces and velocities are sampled. Here we show that sampling the forces and velocities at the nodes of the structural mesh is equivalent to using lumped mass matrices in the coupling operators. A key theoretical result of our analysis is that if both of these approaches are used together, the IFED method permits the use of lumped mass matrices derived from nodal quadrature rules for any standard interpolatory element. This is different from standard FE methods, which require specialized treatments to accommodate mass lumping with higher-order shape functions. Our theoretical results are confirmed by numerical benchmarks, including standard solid mechanics tests and examination of a dynamic model of a bioprosthetic heart valve.

This work is devoted to design and study efficient and accurate numerical schemes to approximate a chemo-attraction model with consumption effects, which is a nonlinear parabolic system for two variables; the cell density and the concentration of the chemical signal that the cell feel attracted to. We present several finite element schemes to approximate the system, detailing the main properties of each of them, such as conservation of cells, energy-stability and approximated positivity. Moreover, we carry out several numerical simulations to study the efficiency of each of the schemes and to compare them with others classical schemes.

In this paper, we are concerned with arbitrarily high-order momentum-preserving and energy-preserving schemes for solving the generalized Rosenau-type equation, respectively. The derivation of the momentum-preserving schemes is made within the symplectic Runge-Kutta method, coupled with the standard Fourier pseudo-spectral method in space. Then, combined with the quadratic auxiliary variable approach and the symplectic Runge-Kutta method, together with the standard Fourier pseudo-spectral method, we present a class of high-order mass- and energy-preserving schemes for the Rosenau equation. Finally, extensive numerical tests and comparisons are also addressed to illustrate the performance of the proposed schemes.

We propose and analyse a hybrid high-order (HHO) scheme for stationary incompressible magnetohydrodynamics equations. The scheme has an arbitrary order of accuracy and is applicable on generic polyhedral meshes. For sources that are small enough, we prove error estimates in energy norm for the velocity and magnetic field, and $L^2$-norm for the pressure; these estimates are fully robust with respect to small faces, and of optimal order with respect to the mesh size. Using compactness techniques, we also prove that the scheme converges to a solution of the continuous problem, irrespective of the source being small or large. Finally, we illustrate our theoretical results through 3D numerical tests on tetrahedral and Voronoi mesh families.

In this paper, we present a unified and general framework for analyzing the batch updating approach to nonlinear, high-dimensional optimization. The framework encompasses all the currently used batch updating approaches, and is applicable to nonconvex as well as convex functions. Moreover, the framework permits the use of noise-corrupted gradients, as well as first-order approximations to the gradient (sometimes referred to as "gradient-free" approaches). By viewing the analysis of the iterations as a problem in the convergence of stochastic processes, we are able to establish a very general theorem, which includes most known convergence results for zeroth-order and first-order methods. The analysis of "second-order" or momentum-based methods is not a part of this paper, and will be studied elsewhere. However, numerical experiments indicate that momentum-based methods can fail if the true gradient is replaced by its first-order approximation. This requires further theoretical analysis.

Quick simulations for iterative evaluations of multi-design variables and boundary conditions are essential to find the optimal acoustic conditions in building design. We propose to use the reduced basis method (RBM) for realistic room acoustic scenarios where the surfaces have inhomogeneous acoustic properties, which enables quick evaluations of changing absorption materials for different surfaces in room acoustic simulations. The RBM has shown its benefit to speed up room acoustic simulations by three orders of magnitude for uniform boundary conditions. This study investigates the RBM with two main focuses, 1) various source positions in diverse geometries, e.g., square, rectangular, L-shaped, and disproportionate room. 2) Inhomogeneous surface absorption in 2D and 3D by parameterizing numerous acoustic parameters of surfaces, e.g., the thickness of a porous material, cavity depth, switching between a frequency independent (e.g., hard surface) and frequency dependent boundary condition. Results of numerical experiments show speedups of more than two orders of magnitude compared to a high fidelity numerical solver in a 3D case where reverberation time varies within one just noticeable difference in all the frequency octave bands.

北京阿比特科技有限公司