In this paper, we are concerned with arbitrarily high-order momentum-preserving and energy-preserving schemes for solving the generalized Rosenau-type equation, respectively. The derivation of the momentum-preserving schemes is made within the symplectic Runge-Kutta method, coupled with the standard Fourier pseudo-spectral method in space. Then, combined with the quadratic auxiliary variable approach and the symplectic Runge-Kutta method, together with the standard Fourier pseudo-spectral method, we present a class of high-order mass- and energy-preserving schemes for the Rosenau equation. Finally, extensive numerical tests and comparisons are also addressed to illustrate the performance of the proposed schemes.
We introduce a nonlinear structure preserving high-order scheme for anisotropic advection-diffusion equations. This scheme, based on Hybrid High-Order methods, can handle general meshes. It also has an entropy structure, and preserves the positivity of the solution. We present some numerical simulations showing that the scheme converges at the expected order, while preserving positivity and long-time behaviour.
Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the phi-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in l2(H1) and linf(L2) norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of phi-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.
Recently, causal inference has attracted increasing attention from researchers of recommender systems (RS), which analyzes the relationship between a cause and its effect and has a wide range of real-world applications in multiple fields. Causal inference can model the causality in recommender systems like confounding effects and deal with counterfactual problems such as offline policy evaluation and data augmentation. Although there are already some valuable surveys on causal recommendations, these surveys introduce approaches in a relatively isolated way and lack theoretical analysis of existing methods. Due to the unfamiliarity with causality to RS researchers, it is both necessary and challenging to comprehensively review the relevant studies from the perspective of causal theory, which might be instructive for the readers to propose new approaches in practice. This survey attempts to provide a systematic review of up-to-date papers in this area from a theoretical standpoint. Firstly, we introduce the fundamental concepts of causal inference as the basis of the following review. Then we propose a new taxonomy from the perspective of causal techniques and further discuss technical details about how existing methods apply causal inference to address specific recommender issues. Finally, we highlight some promising directions for future research in this field.
Spectral density estimation is a core problem of system identification, which is an important research area of system control and signal processing. There have been numerous results on the design of spectral density estimators. However to our best knowledge, quantitative error analyses of the spectral density estimation have not been proposed yet. In real practice, there are two main factors which induce errors in the spectral density estimation, including the external additive noise and the limited number of samples. In this paper, which is a very preliminary version, we first consider a univariate spectral density estimator using covariance lags. The estimation task is performed by a convex optimization scheme, and the covariance lags of the estimated spectral density are exactly as desired, which makes it possible for quantitative error analyses such as to derive tight error upper bounds. We analyze the errors induced by the two factors and propose upper and lower bounds for the errors. Then the results of the univariate spectral estimator are generalized to the multivariate one.
We develop an optimization-based algorithm for parametric model order reduction (PMOR) of linear time-invariant dynamical systems. Our method aims at minimizing the $\mathcal{H}_\infty \otimes \mathcal{L}_\infty$ approximation error in the frequency and parameter domain by an optimization of the reduced order model (ROM) matrices. State-of-the-art PMOR methods often compute several nonparametric ROMs for different parameter samples, which are then combined to a single parametric ROM. However, these parametric ROMs can have a low accuracy between the utilized sample points. In contrast, our optimization-based PMOR method minimizes the approximation error across the entire parameter domain. Moreover, due to our flexible approach of optimizing the system matrices directly, we can enforce favorable features such as a port-Hamiltonian structure in our ROMs across the entire parameter domain. Our method is an extension of the recently developed SOBMOR-algorithm to parametric systems. We extend both the ROM parameterization and the adaptive sampling procedure to the parametric case. Several numerical examples demonstrate the effectiveness and high accuracy of our method in a comparison with other PMOR methods.
The numerical solution of partial differential equations (PDEs) is difficult, having led to a century of research so far. Recently, there have been pushes to build neural--numerical hybrid solvers, which piggy-backs the modern trend towards fully end-to-end learned systems. Most works so far can only generalize over a subset of properties to which a generic solver would be faced, including: resolution, topology, geometry, boundary conditions, domain discretization regularity, dimensionality, etc. In this work, we build a solver, satisfying these properties, where all the components are based on neural message passing, replacing all heuristically designed components in the computation graph with backprop-optimized neural function approximators. We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes. In order to encourage stability in training autoregressive models, we put forward a method that is based on the principle of zero-stability, posing stability as a domain adaptation problem. We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
The paper concerns problems of the recovery of operators from noisy information in weighted $L_q$-spaces with homogeneous weights. A number of general theorems are proved and applied to finding exact constants in multidimensional Carlson type inequalities with several weights and problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of generalized Laplace operators from a noisy Fourier transform in the $L_p$-metric.
Lane graph estimation is an essential and highly challenging task in automated driving and HD map learning. Existing methods using either onboard or aerial imagery struggle with complex lane topologies, out-of-distribution scenarios, or significant occlusions in the image space. Moreover, merging overlapping lane graphs to obtain consistent large-scale graphs remains difficult. To overcome these challenges, we propose a novel bottom-up approach to lane graph estimation from aerial imagery that aggregates multiple overlapping graphs into a single consistent graph. Due to its modular design, our method allows us to address two complementary tasks: predicting ego-respective successor lane graphs from arbitrary vehicle positions using a graph neural network and aggregating these predictions into a consistent global lane graph. Extensive experiments on a large-scale lane graph dataset demonstrate that our approach yields highly accurate lane graphs, even in regions with severe occlusions. The presented approach to graph aggregation proves to eliminate inconsistent predictions while increasing the overall graph quality. We make our large-scale urban lane graph dataset and code publicly available at //urbanlanegraph.cs.uni-freiburg.de.
Graph Neural Networks (GNNs) are de facto solutions to structural data learning. However, it is susceptible to low-quality and unreliable structure, which has been a norm rather than an exception in real-world graphs. Existing graph structure learning (GSL) frameworks still lack robustness and interpretability. This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree. Particularly, we exploit the one-dimensional structural entropy to maximize embedded information content when auxiliary neighbourhood attributes are fused to enhance the original graph. A new scheme of constructing optimal encoding trees is proposed to minimize the uncertainty and noises in the graph whilst assuring proper community partition in hierarchical abstraction. We present a novel sample-based mechanism for restoring the graph structure via node structural entropy distribution. It increases the connectivity among nodes with larger uncertainty in lower-level communities. SE-GSL is compatible with various GNN models and enhances the robustness towards noisy and heterophily structures. Extensive experiments show significant improvements in the effectiveness and robustness of structure learning and node representation learning.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.