Mobile autonomy relies on the precise perception of dynamic environments. Robustly tracking moving objects in 3D world thus plays a pivotal role for applications like trajectory prediction, obstacle avoidance, and path planning. While most current methods utilize LiDARs or cameras for Multiple Object Tracking (MOT), the capabilities of 4D imaging radars remain largely unexplored. Recognizing the challenges posed by radar noise and point sparsity in 4D radar data, we introduce RaTrack, an innovative solution tailored for radar-based tracking. Bypassing the typical reliance on specific object types and 3D bounding boxes, our method focuses on motion segmentation and clustering, enriched by a motion estimation module. Evaluated on the View-of-Delft dataset, RaTrack showcases superior tracking precision of moving objects, largely surpassing the performance of the state of the art.
This study presents a comprehensive overview of PIML techniques in the context of condition monitoring. The central concept driving PIML is the incorporation of known physical laws and constraints into machine learning algorithms, enabling them to learn from available data while remaining consistent with physical principles. Through fusing domain knowledge with data-driven learning, PIML methods offer enhanced accuracy and interpretability in comparison to purely data-driven approaches. In this comprehensive survey, detailed examinations are performed with regard to the methodology by which known physical principles are integrated within machine learning frameworks, as well as their suitability for specific tasks within condition monitoring. Incorporation of physical knowledge into the ML model may be realized in a variety of methods, with each having its unique advantages and drawbacks. The distinct advantages and limitations of each methodology for the integration of physics within data-driven models are detailed, considering factors such as computational efficiency, model interpretability, and generalizability to different systems in condition monitoring and fault detection. Several case studies and works of literature utilizing this emerging concept are presented to demonstrate the efficacy of PIML in condition monitoring applications. From the literature reviewed, the versatility and potential of PIML in condition monitoring may be demonstrated. Novel PIML methods offer an innovative solution for addressing the complexities of condition monitoring and associated challenges. This comprehensive survey helps form the foundation for future work in the field. As the technology continues to advance, PIML is expected to play a crucial role in enhancing maintenance strategies, system reliability, and overall operational efficiency in engineering systems.
Encompassing numerous nationwide, statewide, and institutional initiatives in the United States, provider profiling has evolved into a major health care undertaking with ubiquitous applications, profound implications, and high-stakes consequences. In line with such a significant profile, the literature has accumulated a number of developments dedicated to enhancing the statistical paradigm of provider profiling. Tackling wide-ranging profiling issues, these methods typically adjust for risk factors using linear predictors. While this approach is simple, it can be too restrictive to characterize complex and dynamic factor-outcome associations in certain contexts. One such example arises from evaluating dialysis facilities treating Medicare beneficiaries with end-stage renal disease. It is of primary interest to consider how the coronavirus disease (COVID-19) affected 30-day unplanned readmissions in 2020. The impact of COVID-19 on the risk of readmission varied dramatically across pandemic phases. To efficiently capture the variation while profiling facilities, we develop a generalized partially linear model (GPLM) that incorporates a neural network. Considering provider-level clustering, we implement the GPLM as a stratified sampling-based stochastic optimization algorithm that features accelerated convergence. Furthermore, an exact test is designed to identify under- and over-performing facilities, with an accompanying funnel plot to visualize profiles. The advantages of the proposed methods are demonstrated through simulation experiments and profiling dialysis facilities using 2020 Medicare claims from the United States Renal Data System.
Pseudorange errors are the root cause of localization inaccuracy in GPS. Previous data-driven methods regress and eliminate pseudorange errors using handcrafted intermediate labels. Unlike them, we propose an end-to-end GPS localization framework, E2E-PrNet, to train a neural network for pseudorange correction (PrNet) directly using the final task loss calculated with the ground truth of GPS receiver states. The gradients of the loss with respect to learnable parameters are backpropagated through a differentiable nonlinear least squares optimizer to PrNet. The feasibility is verified with GPS data collected by Android phones, showing that E2E-PrNet outperforms the state-of-the-art end-to-end GPS localization methods.
Many real-world problems can be efficiently modeled as Mixed Integer Programs (MIPs) and solved with the Branch-and-Bound method. Prior work has shown the existence of MIP backdoors, small sets of variables such that prioritizing branching on them when possible leads to faster running times. However, finding high-quality backdoors that improve running times remains an open question. Previous work learns to estimate the relative solver speed of randomly sampled backdoors through ranking and then decide whether to use it. In this paper, we utilize the Monte-Carlo tree search method to collect backdoors for training, rather than relying on random sampling, and adapt a contrastive learning framework to train a Graph Attention Network model to predict backdoors. Our method, evaluated on four common MIP problem domains, demonstrates performance improvements over both Gurobi and previous models.
In spite of the rapidly evolving landscape of text-to-image generation, the synthesis and manipulation of multiple entities while adhering to specific relational constraints pose enduring challenges. This paper introduces an innovative progressive synthesis and editing operation that systematically incorporates entities into the target image, ensuring their adherence to spatial and relational constraints at each sequential step. Our key insight stems from the observation that while a pre-trained text-to-image diffusion model adeptly handles one or two entities, it often falters when dealing with a greater number. To address this limitation, we propose harnessing the capabilities of a Large Language Model (LLM) to decompose intricate and protracted text descriptions into coherent directives adhering to stringent formats. To facilitate the execution of directives involving distinct semantic operations-namely insertion, editing, and erasing-we formulate the Stimulus, Response, and Fusion (SRF) framework. Within this framework, latent regions are gently stimulated in alignment with each operation, followed by the fusion of the responsive latent components to achieve cohesive entity manipulation. Our proposed framework yields notable advancements in object synthesis, particularly when confronted with intricate and lengthy textual inputs. Consequently, it establishes a new benchmark for text-to-image generation tasks, further elevating the field's performance standards.
Visually restoring underwater scenes primarily involves mitigating interference from underwater media. Existing methods ignore the inherent scale-related characteristics in underwater scenes. Therefore, we present the synergistic multi-scale detail refinement via intrinsic supervision (SMDR-IS) for enhancing underwater scene details, which contain multi-stages. The low-degradation stage from the original images furnishes the original stage with multi-scale details, achieved through feature propagation using the Adaptive Selective Intrinsic Supervised Feature (ASISF) module. By using intrinsic supervision, the ASISF module can precisely control and guide feature transmission across multi-degradation stages, enhancing multi-scale detail refinement and minimizing the interference from irrelevant information in the low-degradation stage. In multi-degradation encoder-decoder framework of SMDR-IS, we introduce the Bifocal Intrinsic-Context Attention Module (BICA). Based on the intrinsic supervision principles, BICA efficiently exploits multi-scale scene information in images. BICA directs higher-resolution spaces by tapping into the insights of lower-resolution ones, underscoring the pivotal role of spatial contextual relationships in underwater image restoration. Throughout training, the inclusion of a multi-degradation loss function can enhance the network, allowing it to adeptly extract information across diverse scales. When benchmarked against state-of-the-art methods, SMDR-IS consistently showcases superior performance. The code is publicly available at: //github.com/zhoujingchun03/SMDR-IS.
Voice conversion refers to transferring speaker identity with well-preserved content. Better disentanglement of speech representations leads to better voice conversion. Recent studies have found that phonetic information from input audio has the potential ability to well represent content. Besides, the speaker-style modeling with pre-trained models making the process more complex. To tackle these issues, we introduce a new method named "CTVC" which utilizes disentangled speech representations with contrastive learning and time-invariant retrieval. Specifically, a similarity-based compression module is used to facilitate a more intimate connection between the frame-level hidden features and linguistic information at phoneme-level. Additionally, a time-invariant retrieval is proposed for timbre extraction based on multiple segmentations and mutual information. Experimental results demonstrate that "CTVC" outperforms previous studies and improves the sound quality and similarity of converted results.
Delay and Doppler ambiguities of comb reference signal patterns are investigated through time delay and Doppler shift detection using high-resolution sensing algorithms. Necessary conditions of designing comb RS patterns and synthesizing different reference signal patterns in general are derived under the goal of eliminating side peaks and preserving the best achievable ambiguity performance of OFDM signals for target detection.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.