We investigate properties of Poncelet $N$-gon families inscribed in a parabola and circumscribing a focus-centered circle. These can be regarded as the polar images of a bicentric family with respect to the circumcircle, such that the bicentric incircle contains the circumcenter. We derive closure conditions for several $N$ and describe curious Euclidean properties such as straight line, circular, and point, loci, as well as a (perhaps new) conserved quantity.
We investigate the problem of message transmission over time-varying single-user multiple-input multiple-output (MIMO) Rayleigh fading channels with average power constraint and with complete channel state information available at the receiver side (CSIR). To describe the channel variations over the time, we consider a first-order Gauss-Markov model. We completely solve the problem by giving a single-letter characterization of the channel capacity in closed form and by providing a rigorous proof of it.
We study two "above guarantee" versions of the classical Longest Path problem on undirected and directed graphs and obtain the following results. In the first variant of Longest Path that we study, called Longest Detour, the task is to decide whether a graph has an (s,t)-path of length at least dist_G(s,t)+k (where dist_G(s,t) denotes the length of a shortest path from s to t). Bez\'akov\'a et al. proved that on undirected graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2^{O (k)} n. Further, they left the parameterized complexity of the problem on directed graphs open. Our first main result establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new insights, we design a 2^{O(k)} n^{O(1)} time algorithm for the problem on directed planar graphs. Further, the new approach yields a significantly faster FPT algorithm on undirected graphs. In the second variant of Longest Path, namely Longest Path Above Diameter, the task is to decide whether the graph has a path of length at least diam(G)+k (diam(G) denotes the length of a longest shortest path in a graph G). We obtain dichotomy results about Longest Path Above Diameter on undirected and directed graphs. For (un)directed graphs, Longest Path Above Diameter is NP-complete even for k=1. However, if the input undirected graph is 2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show that Longest Path Above Diameter is solvable in polynomial time for each k\in{1,\dots, 4} and is NP-complete for every k\geq 5. The parameterized complexity of Longest Path Above Diameter on general directed graphs remains an interesting open problem.
We study the classical expander codes, introduced by Sipser and Spielman \cite{SS96}. Given any constants $0< \alpha, \varepsilon < 1/2$, and an arbitrary bipartite graph with $N$ vertices on the left, $M < N$ vertices on the right, and left degree $D$ such that any left subset $S$ of size at most $\alpha N$ has at least $(1-\varepsilon)|S|D$ neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly $\frac{\alpha N}{2 \varepsilon }$. This is strictly better than the best known previous result of $2(1-\varepsilon ) \alpha N$ \cite{Sudan2000note, Viderman13b} whenever $\varepsilon < 1/2$, and improves the previous result significantly when $\varepsilon $ is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever $\varepsilon < \frac{1}{4}$. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.
In this article we investigate a system of geometric evolution equations describing a curvature driven motion of a family of 3D curves in the normal and binormal directions. Evolving curves may be subject of mutual interactions having both local or nonlocal character where the entire curve may influence evolution of other curves. Such an evolution and interaction can be found in applications. We explore the direct Lagrangian approach for treating the geometric flow of such interacting curves. Using the abstract theory of nonlinear analytic semi-flows, we are able to prove local existence, uniqueness and continuation of classical H\"older smooth solutions to the governing system of nonlinear parabolic equations. Using the finite volume method, we construct an efficient numerical scheme solving the governing system of nonlinear parabolic equations. Additionally, a nontrivial tangential velocity is considered allowing for redistribution of discretization nodes. We also present several computational studies of the flow combining the normal and binormal velocity and considering nonlocal interactions.
Inverse source problems arise often in real-world applications, such as localizing unknown groundwater contaminant sources. Being different from Tikhonov regularization, the quasi-boundary value method has been proposed and analyzed as an effective way for regularizing such inverse source problems, which was shown to achieve an optimal order convergence rate under suitable assumptions. However, fast direct or iterative solvers for the resulting all-at-once large-scale linear systems have been rarely studied in the literature. In this work, we first proposed and analyzed a modified quasi-boundary value method, and then developed a diagonalization-based parallel-in-time (PinT) direct solver, which can achieve a dramatic speedup in CPU times when compared with MATLAB's sparse direct solver. In particular, the time-discretization matrix $B$ is shown to be diagonalizable, and the condition number of its eigenvector matrix $V$ is proven to exhibit quadratic growth, which guarantees the roundoff errors due to diagonalization is well controlled. Several 1D and 2D examples are presented to demonstrate the very promising computational efficiency of our proposed method, where the CPU times in 2D cases can be speedup by three orders of magnitude.
In this paper, we investigate local permutation tests for testing conditional independence between two random vectors $X$ and $Y$ given $Z$. The local permutation test determines the significance of a test statistic by locally shuffling samples which share similar values of the conditioning variables $Z$, and it forms a natural extension of the usual permutation approach for unconditional independence testing. Despite its simplicity and empirical support, the theoretical underpinnings of the local permutation test remain unclear. Motivated by this gap, this paper aims to establish theoretical foundations of local permutation tests with a particular focus on binning-based statistics. We start by revisiting the hardness of conditional independence testing and provide an upper bound for the power of any valid conditional independence test, which holds when the probability of observing collisions in $Z$ is small. This negative result naturally motivates us to impose additional restrictions on the possible distributions under the null and alternate. To this end, we focus our attention on certain classes of smooth distributions and identify provably tight conditions under which the local permutation method is universally valid, i.e. it is valid when applied to any (binning-based) test statistic. To complement this result on type I error control, we also show that in some cases, a binning-based statistic calibrated via the local permutation method can achieve minimax optimal power. We also introduce a double-binning permutation strategy, which yields a valid test over less smooth null distributions than the typical single-binning method without compromising much power. Finally, we present simulation results to support our theoretical findings.
We study the problem of query evaluation on probabilistic graphs, namely, tuple-independent probabilistic databases over signatures of arity two. We focus on the class of queries closed under homomorphisms, or, equivalently, the infinite unions of conjunctive queries. Our main result states that the probabilistic query evaluation problem is #P-hard for all unbounded queries from this class. As bounded queries from this class are equivalent to a union of conjunctive queries, they are already classified by the dichotomy of Dalvi and Suciu (2012). Hence, our result and theirs imply a complete data complexity dichotomy, between polynomial time and #P-hardness, on evaluating homomorphism-closed queries over probabilistic graphs. This dichotomy covers in particular all fragments of infinite unions of conjunctive queries over arity-two signatures, such as negation-free (disjunctive) Datalog, regular path queries, and a large class of ontology-mediated queries. The dichotomy also applies to a restricted case of probabilistic query evaluation called generalized model counting, where fact probabilities must be 0, 0.5, or 1. We show the main result by reducing from the problem of counting the valuations of positive partitioned 2-DNF formulae, or from the source-to-target reliability problem in an undirected graph, depending on properties of minimal models for the query.
Maximum likelihood estimation of generalized linear mixed models(GLMMs) is difficult due to marginalization of the random effects. Computing derivatives of a fitted GLMM's likelihood (with respect to model parameters) is also difficult, especially because the derivatives are not by-products of popular estimation algorithms. In this paper, we describe GLMM derivatives along with a quadrature method to efficiently compute them, focusing on lme4 models with a single clustering variable. We describe how psychometric results related to IRT are helpful for obtaining these derivatives, as well as for verifying the derivatives' accuracies. After describing the derivative computation methods, we illustrate the many possible uses of these derivatives, including robust standard errors, score tests of fixed effect parameters, and likelihood ratio tests of non-nested models. The derivative computation methods and applications described in the paper are all available in easily-obtained R packages.
Automated scoring of free drawings or images as responses has yet to be utilized in large-scale assessments of student achievement. In this study, we propose artificial neural networks to classify these types of graphical responses from a computer based international mathematics and science assessment. We are comparing classification accuracy of convolutional and feedforward approaches. Our results show that convolutional neural networks (CNNs) outperform feedforward neural networks in both loss and accuracy. The CNN models classified up to 97.71% of the image responses into the appropriate scoring category, which is comparable to, if not more accurate, than typical human raters. These findings were further strengthened by the observation that the most accurate CNN models correctly classified some image responses that had been incorrectly scored by the human raters. As an additional innovation, we outline a method to select human rated responses for the training sample based on an application of the expected response function derived from item response theory. This paper argues that CNN-based automated scoring of image responses is a highly accurate procedure that could potentially replace the workload and cost of second human raters for large scale assessments, while improving the validity and comparability of scoring complex constructed-response items.
Developing classification algorithms that are fair with respect to sensitive attributes of the data has become an important problem due to the growing deployment of classification algorithms in various social contexts. Several recent works have focused on fairness with respect to a specific metric, modeled the corresponding fair classification problem as a constrained optimization problem, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which we do not have fair classifiers and many of the aforementioned algorithms do not come with theoretical guarantees; perhaps because the resulting optimization problem is non-convex. The main contribution of this paper is a new meta-algorithm for classification that takes as input a large class of fairness constraints, with respect to multiple non-disjoint sensitive attributes, and which comes with provable guarantees. This is achieved by first developing a meta-algorithm for a large family of classification problems with convex constraints, and then showing that classification problems with general types of fairness constraints can be reduced to those in this family. We present empirical results that show that our algorithm can achieve near-perfect fairness with respect to various fairness metrics, and that the loss in accuracy due to the imposed fairness constraints is often small. Overall, this work unifies several prior works on fair classification, presents a practical algorithm with theoretical guarantees, and can handle fairness metrics that were previously not possible.