With the development of video understanding, there is a proliferation of tasks for clip-level temporal video analysis, including temporal action detection (TAD), temporal action segmentation (TAS), and generic event boundary detection (GEBD). While task-specific video understanding models have exhibited outstanding performance in each task, there remains a dearth of a unified framework capable of simultaneously addressing multiple tasks, which is a promising direction for the next generation of AI. To this end, in this paper, we propose a single unified framework, coined as Temporal2Seq, to formulate the output of these temporal video understanding tasks as a sequence of discrete tokens. With this unified token representation, Temporal2Seq can train a generalist model within a single architecture on different video understanding tasks. In the absence of multi-task learning (MTL) benchmarks, we compile a comprehensive co-training dataset by borrowing the datasets from TAD, TAS, and GEBD tasks. We evaluate our Temporal2Seq generalist model on the corresponding test sets of three tasks, demonstrating that Temporal2Seq can produce reasonable results on various tasks and achieve advantages compared with single-task training on this framework. We also investigate the generalization performance of our generalist model on new datasets from different tasks, which yields superior performance to the specific model.
Ideation is a critical component of video-based design (VBD), where videos serve as the primary medium for design exploration and inspiration. The emergence of generative AI offers considerable potential to enhance this process by streamlining video analysis and facilitating idea generation. In this paper, we present DesignMinds, a prototype that integrates a state-of-the-art Vision-Language Model (VLM) with a context-enhanced Large Language Model (LLM) to support ideation in VBD. To evaluate DesignMinds, we conducted a between-subject study with 35 design practitioners, comparing its performance to a baseline condition. Our results demonstrate that DesignMinds significantly enhances the flexibility and originality of ideation, while also increasing task engagement. Importantly, the introduction of this technology did not negatively impact user experience, technology acceptance, or usability.
State-of-the-art large language models (LLMs) are typically deployed as online services, requiring users to transmit detailed prompts to cloud servers. This raises significant privacy concerns. In response, we introduce ConfusionPrompt, a novel framework for private LLM inference that protects user privacy by: (i) decomposing the original prompt into smaller sub-prompts, and (ii) generating pseudo-prompts alongside the genuine sub-prompts, which are then sent to the LLM. The server responses are later recomposed by the user to reconstruct the final output. This approach offers key advantages over previous LLM privacy protection methods: (i) it integrates seamlessly with existing black-box LLMs, and (ii) it delivers a significantly improved privacy-utility trade-off compared to existing text perturbation methods. We also develop a $(\lambda, \mu, \rho)$-privacy model to formulate the requirements for a privacy-preserving group of prompts and provide a complexity analysis to justify the role of prompt decomposition. Our empirical evaluation shows that ConfusionPrompt achieves significantly higher utility than local inference methods using open-source models and perturbation-based techniques, while also reducing memory consumption compared to open-source LLMs.
In computer vision, Image Difference Captioning (IDC) is crucial for accurately describing variations between closely related images. Traditional IDC methods often rely on specialist models, which restrict their applicability across varied contexts. This paper introduces the OneDiff model, a novel generalist approach that utilizes a robust vision-language model architecture, integrating a siamese image encoder with a Visual Delta Module. This innovative configuration allows for the precise detection and articulation of fine-grained differences between image pairs. OneDiff is trained through a dual-phase strategy, encompassing Coupled Sample Training and multi-task learning across a diverse array of data types, supported by our newly developed DiffCap Dataset. This dataset merges real-world and synthetic data, enhancing the training process and bolstering the model's robustness. Extensive testing on diverse IDC benchmarks, such as Spot-the-Diff, Image-Editing-Request, and Birds-to-Words, shows that OneDiff consistently outperforms existing state-of-the-art models in accuracy and adaptability, achieving improvements of up to 97% CIDEr points in average. By setting a new benchmark in IDC, OneDiff paves the way for more versatile and effective applications in detecting and describing visual differences. The code, models, and data will be made publicly available.
In the era of the Internet of Things (IoT) and data sharing, users frequently upload their personal information to enterprise databases to enjoy enhanced service experiences provided by various online services. However, the widespread presence of system vulnerabilities, remote network intrusions, and insider threats significantly increases the exposure of private enterprise data on the internet. If such data is stolen or leaked by attackers, it can result in severe asset losses and business operation disruptions. To address these challenges, this paper proposes a novel threat detection framework, TabITD. This framework integrates Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA) strategies to form a collaborative detection system that bridges the gaps in existing systems' capabilities. It effectively addresses the blurred boundaries between external and insider threats caused by the diversification of attack methods, thereby enhancing the model's learning ability and overall detection performance. Moreover, the proposed method leverages the TabNet architecture, which employs a sparse attention feature selection mechanism that allows TabNet to select the most relevant features at each decision step, thereby improving the detection of rare-class attacks. We evaluated our proposed solution on two different datasets, achieving average accuracies of 96.71% and 97.25%, respectively. The results demonstrate that this approach can effectively detect malicious behaviors such as masquerade attacks and external threats, significantly enhancing network security defenses and the efficiency of network attack detection.
Integration of diverse visual prompts like clicks, scribbles, and boxes in interactive image segmentation significantly facilitates users' interaction as well as improves interaction efficiency. However, existing studies primarily encode the position or pixel regions of prompts without considering the contextual areas around them, resulting in insufficient prompt feedback, which is not conducive to performance acceleration. To tackle this problem, this paper proposes a simple yet effective Probabilistic Visual Prompt Unified Transformer (PVPUFormer) for interactive image segmentation, which allows users to flexibly input diverse visual prompts with the probabilistic prompt encoding and feature post-processing to excavate sufficient and robust prompt features for performance boosting. Specifically, we first propose a Probabilistic Prompt-unified Encoder (PPuE) to generate a unified one-dimensional vector by exploring both prompt and non-prompt contextual information, offering richer feedback cues to accelerate performance improvement. On this basis, we further present a Prompt-to-Pixel Contrastive (P$^2$C) loss to accurately align both prompt and pixel features, bridging the representation gap between them to offer consistent feature representations for mask prediction. Moreover, our approach designs a Dual-cross Merging Attention (DMA) module to implement bidirectional feature interaction between image and prompt features, generating notable features for performance improvement. A comprehensive variety of experiments on several challenging datasets demonstrates that the proposed components achieve consistent improvements, yielding state-of-the-art interactive segmentation performance. Our code is available at //github.com/XuZhang1211/PVPUFormer.
Adapting pretrained image-based diffusion models to generate temporally consistent videos has become an impactful generative modeling research direction. Training-free noise-space manipulation has proven to be an effective technique, where the challenge is to preserve the Gaussian white noise distribution while adding in temporal consistency. Recently, Chang et al. (2024) formulated this problem using an integral noise representation with distribution-preserving guarantees, and proposed an upsampling-based algorithm to compute it. However, while their mathematical formulation is advantageous, the algorithm incurs a high computational cost. Through analyzing the limiting-case behavior of their algorithm as the upsampling resolution goes to infinity, we develop an alternative algorithm that, by gathering increments of multiple Brownian bridges, achieves their infinite-resolution accuracy while simultaneously reducing the computational cost by orders of magnitude. We prove and experimentally validate our theoretical claims, and demonstrate our method's effectiveness in real-world applications. We further show that our method readily extends to the 3-dimensional space.
Optimizing the reaction to network events, which is critical in tasks such as clock synchronization, multicast, and routing, becomes increasingly challenging as networks grow larger. To improve the reaction time compared to centralized solutions, the theory community has made significant progress in the design of message-passing algorithms that leverage all nodes for distributed computation, and the advent of programmable switches makes it now possible to materialize them. We propose FRANCIS, a framework and associated libraries for running message-passing algorithms on programmable switches. It features primitives that allow easy integration of such algorithms for quickly reacting to network events while optimizing resource consumption. We use FRANCIS to implement event reaction solutions that improve clock synchronization, source-routed multicast, and routing and demonstrate up to 18x reduction in reaction time.
Current video-language models (VLMs) rely extensively on instance-level alignment between video and language modalities, which presents two major limitations: (1) visual reasoning disobeys the natural perception that humans do in first-person perspective, leading to a lack of reasoning interpretation; and (2) learning is limited in capturing inherent fine-grained relationships between two modalities. In this paper, we take an inspiration from human perception and explore a compositional approach for egocentric video representation. We introduce HENASY (Hierarchical ENtities ASsemblY), which includes a spatiotemporal token grouping mechanism to explicitly assemble dynamically evolving scene entities through time and model their relationship for video representation. By leveraging compositional structure understanding, HENASY possesses strong interpretability via visual grounding with free-form text queries. We further explore a suite of multi-grained contrastive losses to facilitate entity-centric understandings. This comprises three alignment types: video-narration, noun-entity, verb-entities alignments. Our method demonstrates strong interpretability in both quantitative and qualitative experiments; while maintaining competitive performances on five downstream tasks via zero-shot transfer or as video/text representation, including video/text retrieval, action recognition, multi-choice query, natural language query, and moments query.
Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.