Heart failure (HF) contributes to circa 200,000 annual hospitalizations in France. With the increasing age of HF patients, elucidating the specific causes of inpatient mortality became a public health problematic. We introduce a novel methodological framework designed to identify prevalent health trajectories and investigate their impact on death. The initial step involves applying sequential pattern mining to characterize patients' trajectories, followed by an unsupervised clustering algorithm based on a new metric for measuring the distance between hospitalization diagnoses. Finally, a survival analysis is conducted to assess survival outcomes. The application of this framework to HF patients from a representative sample of the French population demonstrates its methodological significance in enhancing the analysis of healthcare trajectories.
The energy-efficient and brain-like information processing abilities of Spiking Neural Networks (SNNs) have attracted considerable attention, establishing them as a crucial element of brain-inspired computing. One prevalent challenge encountered by SNNs is the trade-off between inference speed and accuracy, which requires sufficient time to achieve the desired level of performance. Drawing inspiration from animal behavior experiments that demonstrate a connection between decision-making reaction times, task complexity, and confidence levels, this study seeks to apply these insights to SNNs. The focus is on understanding how SNNs make inferences, with a particular emphasis on untangling the interplay between signal and noise in decision-making processes. The proposed theoretical framework introduces a new optimization objective for SNN training, highlighting the importance of not only the accuracy of decisions but also the development of predictive confidence through learning from past experiences. Experimental results demonstrate that SNNs trained according to this framework exhibit improved confidence expression, leading to better decision-making outcomes. In addition, a strategy is introduced for efficient decision-making during inference, which allows SNNs to complete tasks more quickly and can use stopping times as indicators of decision confidence. By integrating neuroscience insights with neuromorphic computing, this study opens up new possibilities to explore the capabilities of SNNs and advance their application in complex decision-making scenarios.
This work proposes to measure the scope of a patent claim as the reciprocal of self-information contained in this claim. Self-information is calculated based on a probability of occurrence of the claim, where this probability is obtained from a language model. Grounded in information theory, this approach is based on the assumption that an unlikely concept is more informative than a usual concept, insofar as it is more surprising. In turn, the more surprising the information required to define the claim, the narrower its scope. Seven language models are considered, ranging from simplest models (each word or character has an identical probability) to intermediate models (based on average word or character frequencies), to large language models (LLMs) such as GPT2 and davinci-002. Remarkably, when using the simplest language models to compute the probabilities, the scope becomes proportional to the reciprocal of the number of words or characters involved in the claim, a metric already used in previous works. Application is made to multiple series of patent claims directed to distinct inventions, where each series consists of claims devised to have a gradually decreasing scope. The performance of the language models is then assessed through several ad hoc tests. The LLMs outperform models based on word and character frequencies, which themselves outdo the simplest models based on word or character counts. Interestingly, however, the character count appears to be a more reliable indicator than the word count.
Multi-regional clinical trials (MRCTs) play an increasingly crucial role in global pharmaceutical development by expediting data gathering and regulatory approval across diverse patient populations. However, differences in recruitment practices and regional demographics often lead to variations in study participant characteristics, potentially biasing treatment effect estimates and undermining treatment effect consistency assessment across regions. To address this challenge, we propose novel estimators and inference methods utilizing inverse probability of sampling and calibration weighting. Our approaches aim to eliminate exogenous regional imbalance while preserving intrinsic differences across regions, such as race and genetic variants. Moreover, time-to-event outcomes in MRCT studies receive limited attention, with existing methodologies primarily focusing on hazard ratios. In this paper, we adopt restricted mean survival time to characterize the treatment effect, offering more straightforward interpretations of treatment effects with fewer assumptions than hazard ratios. Theoretical results are established for the proposed estimators, supported by extensive simulation studies. We illustrate the effectiveness of our methods through a real MRCT case study on acute coronary syndromes.
As artificial intelligence (AI) becomes more widespread, one question that arises is how human-AI interaction might impact human-human interaction. Chatbots, for example, are increasingly used as social companions, and while much is speculated, little is known empirically about how their use impacts human relationships. A common hypothesis is that relationships with companion chatbots are detrimental to social health by harming or replacing human interaction, but this hypothesis may be too simplistic, especially considering the social needs of users and the health of their preexisting human relationships. To understand how relationships with companion chatbots impact social health, we studied people who regularly used companion chatbots and people who did not use them. Contrary to expectations, companion chatbot users indicated that these relationships were beneficial to their social health, whereas non-users viewed them as harmful. Another common assumption is that people perceive conscious, humanlike AI as disturbing and threatening. Among both users and non-users, however, we found the opposite: perceiving companion chatbots as more conscious and humanlike correlated with more positive opinions and more pronounced social health benefits. Detailed accounts from users suggested that these humanlike chatbots may aid social health by supplying reliable and safe interactions, without necessarily harming human relationships, but this may depend on users' preexisting social needs and how they perceive both human likeness and mind in the chatbot.
The imposing evolution of artificial intelligence systems and, specifically, of Large Language Models (LLM) makes it necessary to carry out assessments of their level of risk and the impact they may have in the area of privacy, personal data protection and at an ethical level, especially on the weakest and most vulnerable. This contribution addresses human oversight, ethical oversight, and privacy impact assessment.
Fiber-reinforced composites (FRC) provide structural systems with unique features that appeal to various civilian and military sectors. Often, one needs to modulate the temperature field to achieve the intended functionalities (e.g., self-healing) in these lightweight structures. Vascular-based active cooling offers one efficient way of thermal regulation in such material systems. However, the thermophysical properties (e.g., thermal conductivity, specific heat capacity) of FRC and their base constituents depend on temperature, and such structures are often subject to a broad spectrum of temperatures. Notably, prior active cooling modeling studies did not account for such temperature dependence. Thus, the primary aim of this paper is to reveal the effect of temperature-dependent material properties -- obtained via material characterization -- on the qualitative and quantitative behaviors of active cooling. By applying mathematical analysis and conducting numerical simulations, we show this dependence does not affect qualitative attributes, such as minimum and maximum principles (in the same spirit as \textsc{Hopf}'s results for elliptic partial differential equations). However, the dependence slightly affects quantitative results, such as the mean surface temperature and thermal efficiency. The import of our study is that it provides a deeper understanding of thermal regulation systems under practical scenarios and can guide researchers and practitioners in perfecting associated designs.
Sparsity is a highly desired feature in deep neural networks (DNNs) since it ensures numerical efficiency, improves the interpretability of models (due to the smaller number of relevant features), and robustness. For linear models, it is well known that there exists a \emph{regularization path} connecting the sparsest solution in terms of the $\ell^1$ norm, i.e., zero weights and the non-regularized solution. Very recently, there was a first attempt to extend the concept of regularization paths to DNNs by means of treating the empirical loss and sparsity ($\ell^1$ norm) as two conflicting criteria and solving the resulting multiobjective optimization problem for low-dimensional DNN. However, due to the non-smoothness of the $\ell^1$ norm and the high number of parameters, this approach is not very efficient from a computational perspective for high-dimensional DNNs. To overcome this limitation, we present an algorithm that allows for the approximation of the entire Pareto front for the above-mentioned objectives in a very efficient manner for high-dimensional DNNs with millions of parameters. We present numerical examples using both deterministic and stochastic gradients. We furthermore demonstrate that knowledge of the regularization path allows for a well-generalizing network parametrization. To the best of our knowledge, this is the first algorithm to compute the regularization path for non-convex multiobjective optimization problems (MOPs) with millions of degrees of freedom.
Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.
Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.