In a multi objective setting, a portfolio manager's highly consequential decisions can benefit from assessing alternative forecasting models of stock index movement. The present investigation proposes a new approach to identify a set of nondominated neural network models for further selection by the decision maker. A new coevolution approach is proposed to simultaneously select the features and topology of neural networks (collectively referred to as neural architecture), where the features are viewed from a topological perspective as input neurons. Further, the coevolution is posed as a multicriteria problem to evolve sparse and efficacious neural architectures. The well known dominance and decomposition based multiobjective evolutionary algorithms are augmented with a nongeometric crossover operator to diversify and balance the search for neural architectures across conflicting criteria. Moreover, the coevolution is augmented to accommodate the data based implications of distinct market behaviors prior to and during the ongoing COVID 19 pandemic. A detailed comparative evaluation is carried out with the conventional sequential approach of feature selection followed by neural topology design, as well as a scalarized coevolution approach. The results on the NASDAQ index in pre and peri COVID time windows convincingly demonstrate that the proposed coevolution approach can evolve a set of nondominated neural forecasting models with better generalization capabilities.
We present a comprehensive, user-centric approach to understand preferences in AI-based productivity agents and develop personalized solutions tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on the insights distilled from our study, we believe that our work can enable and guide future research to further enhance productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.
Algorithmic discrimination is a condition that arises when data-driven software unfairly treats users based on attributes like ethnicity, race, gender, sexual orientation, religion, age, disability, or other personal characteristics. Nowadays, as machine learning gains popularity, cases of algorithmic discrimination are increasingly being reported in several contexts. This study delves into various studies published over the years reporting algorithmic discrimination. We aim to support software engineering researchers and practitioners in addressing this issue by discussing key characteristics of the problem
Serverless computing relieves developers from the burden of resource management, thus providing ease-of-use to the users and the opportunity to optimize resource utilization for the providers. However, today's serverless systems lack performance guarantees for function invocations, thus limiting support for performance-critical applications: we observed severe performance variability (up to 6x). Providers lack visibility into user functions and hence find it challenging to right-size them: we observed heavy resource underutilization (up to 80%). To understand the causes behind the performance variability and underutilization, we conducted a measurement study of commonly deployed serverless functions and learned that the function performance and resource utilization depend crucially on function semantics and inputs. Our key insight is to delay making resource allocation decisions until after the function inputs are available. We introduce Shabari, a resource management framework for serverless systems that makes decisions as late as possible to right-size each invocation to meet functions' performance objectives (SLOs) and improve resource utilization. Shabari uses an online learning agent to right-size each function invocation based on the features of the function input and makes cold-start-aware scheduling decisions. For a range of serverless functions and inputs, Shabari reduces SLO violations by 11-73% while not wasting any vCPUs and reducing wasted memory by 64-94% in the median case, compared to state-of-the-art systems, including Aquatope, Parrotfish, and Cypress.
Decentralized applications (DApps), which are innovative blockchain-powered software systems designed to serve as the fundamental building blocks for the next generation of Internet services, have witnessed exponential growth in recent years. This paper thoroughly compares and analyzes two blockchain-based decentralized storage networks (DSNs), which are crucial foundations for DApp and blockchain ecosystems. The study examines their respective mechanisms for data persistence, strategies for enforcing data retention, and token economics. In addition to delving into technical details, the suitability of each storage solution for decentralized application development is assessed, taking into consideration network performance, storage costs, and existing use cases. By evaluating these factors, the paper aims to provide insights into the effectiveness of these technologies in supporting the desirable properties of truly decentralized blockchain applications. In conclusion, the findings of this research are discussed and synthesized, offering valuable perspectives on the capabilities of these technologies. It sheds light on their potential to facilitate the development of DApps and provides an understanding of the ongoing trends in blockchain development.
We consider a wireless communication system with a passive eavesdropper, in which a transmitter and legitimate receiver generate and use key bits to secure the transmission of their data. These bits are added to and used from a pool of available key bits. In this work, we analyze the reliability of the system in terms of the probability that the budget of available key bits will be exhausted. In addition, we investigate the latency before a transmission can take place. Since security, reliability, and latency are three important metrics for modern communication systems, it is of great interest to jointly analyze them in relation to the system parameters. In particular, we show under what conditions the system may remain in an active state indefinitely, i.e., never run out of available secret-key bits. The results presented in this work will allow system designers to adjust the system parameters in such a way that the requirements of the application in terms of both reliability and latency are met.
Dark patterns are often used in interface design to manipulate users into performing actions they would otherwise not take, such as consenting to excessive data collection. We present a narrative serious game concept, along with seven game-adapted dark patterns designed to create awareness of and bolster resistance against dark patterns through direct consequences of player actions. We performed a qualitative, exploratory study investigating player behavior when confronted with game-adapted dark patterns. A thematic analysis provides insights into influencing factors for adapting dark patterns into gameplay, as well as player motivations and driving forces influencing player behavior.
To address intricate real-world tasks, there has been a rising interest in tool utilization in applications of large language models (LLMs). To develop LLM-based agents, it usually requires LLMs to understand many tool functions from different tool documentation. But these documentations could be diverse, redundant or incomplete, which immensely affects the capability of LLMs in using tools. To solve this, we introduce EASYTOOL, a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction for easier tool usage. EasyTool purifies essential information from extensive tool documentation of different sources, and elaborates a unified interface (i.e., tool instruction) to offer standardized tool descriptions and functionalities for LLM-based agents. Extensive experiments on multiple different tasks demonstrate that EasyTool can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios. Our code will be available at \url{//github.com/microsoft/JARVIS/} in the future.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.