亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) and other large foundation models have achieved noteworthy success, but their size exacerbates existing resource consumption and latency challenges. In particular, the large-scale deployment of these models is hindered by the significant resource requirements during inference. In this paper, we study two approaches for mitigating these challenges: employing a cache to store previous queries and learning a model multiplexer to choose from an ensemble of models for query processing. Theoretically, we provide an optimal algorithm for jointly optimizing both approaches to reduce the inference cost in both offline and online tabular settings. By combining a caching algorithm, namely Greedy Dual Size with Frequency (GDSF) or Least Expected Cost (LEC), with a model multiplexer, we achieve optimal rates in both offline and online settings. Empirically, simulations show that the combination of our caching and model multiplexing algorithms greatly improves over the baselines, with up to $50\times$ improvement over the baseline when the ratio between the maximum cost and minimum cost is $100$. Experiments on real datasets show a $4.3\times$ improvement in FLOPs over the baseline when the ratio for FLOPs is $10$, and a $1.8\times$ improvement in latency when the ratio for average latency is $1.85$.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 異常點 · 正則化項 · 極小點 · 泛函 ·
2023 年 7 月 25 日

In this paper, we propose the Minimum Regularized Covariance Trace (MRCT) estimator, a novel method for robust covariance estimation and functional outlier detection. The MRCT estimator employs a subset-based approach that prioritizes subsets exhibiting greater centrality based on the generalization of the Mahalanobis distance, resulting in a fast-MCD type algorithm. Notably, the MRCT estimator handles high-dimensional data sets without the need for preprocessing or dimension reduction techniques, due to the internal smoothening whose amount is determined by the regularization parameter $\alpha > 0$. The selection of the regularization parameter $\alpha$ is automated. The proposed method adapts seamlessly to sparsely observed data by working directly with the finite matrix of basis coefficients. An extensive simulation study demonstrates the efficacy of the MRCT estimator in terms of robust covariance estimation and automated outlier detection, emphasizing the balance between noise exclusion and signal preservation achieved through appropriate selection of $\alpha$. The method converges fast in practice and performs favorably when compared to other functional outlier detection methods.

In this paper, we study the lattice linearity of multiplication and modulo operations. We demonstrate that these operations are lattice linear and the parallel processing algorithms that we study for both these operations are able to exploit the lattice linearity of their respective problems. This implies that these algorithms can be implemented in asynchronous environments, where the nodes are allowed to read old information from each other. These algorithms also exhibit snap-stabilizing properties, i.e., starting from an arbitrary state, the sequence of state transitions made by the system strictly follows its specification.

We consider the problem of contextual bandits and imitation learning, where the learner lacks direct knowledge of the executed action's reward. Instead, the learner can actively query an expert at each round to compare two actions and receive noisy preference feedback. The learner's objective is two-fold: to minimize the regret associated with the executed actions, while simultaneously, minimizing the number of comparison queries made to the expert. In this paper, we assume that the learner has access to a function class that can represent the expert's preference model under appropriate link functions, and provide an algorithm that leverages an online regression oracle with respect to this function class for choosing its actions and deciding when to query. For the contextual bandit setting, our algorithm achieves a regret bound that combines the best of both worlds, scaling as $O(\min\{\sqrt{T}, d/\Delta\})$, where $T$ represents the number of interactions, $d$ represents the eluder dimension of the function class, and $\Delta$ represents the minimum preference of the optimal action over any suboptimal action under all contexts. Our algorithm does not require the knowledge of $\Delta$, and the obtained regret bound is comparable to what can be achieved in the standard contextual bandits setting where the learner observes reward signals at each round. Additionally, our algorithm makes only $O(\min\{T, d^2/\Delta^2\})$ queries to the expert. We then extend our algorithm to the imitation learning setting, where the learning agent engages with an unknown environment in episodes of length $H$ each, and provide similar guarantees for regret and query complexity. Interestingly, our algorithm for imitation learning can even learn to outperform the underlying expert, when it is suboptimal, highlighting a practical benefit of preference-based feedback in imitation learning.

Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in the presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems. We combine offline learning from past experience and online learning from current robot interaction with the unknown environment. These two ingredients enable a highly sample-efficient and adaptive learning process, capable of accurately inferring model dynamics in real-time even in operating regimes that greatly differ from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is heuristically conditioned to the aleatoric (data) uncertainty of the learned dynamics. This controller actively chooses the optimal control actions that (i) optimize the control performance and (ii) improve the efficiency of online learning sample collection. We demonstrate the effectiveness of our method through a series of challenging real-world experiments using a quadrotor system. Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.

This paper challenges the well-established paradigm for building any-to-any networks for training Large Language Models (LLMs). We show that LLMs exhibit a unique communication pattern where only small groups of GPUs require high-bandwidth any-to-any communication within them, to achieve near-optimal training performance. Across these groups of GPUs, the communication is insignificant, sparse, and homogeneous. We propose a new network architecture that closely resembles the communication requirement of LLMs. Our architecture partitions the cluster into sets of GPUs interconnected with non-blocking any-to-any high-bandwidth interconnects that we call HB domains. Across the HB domains, the network only connects GPUs with communication demands. We call this network a "rail-only" connection, and show that our proposed architecture reduces the network cost by up to 75% compared to the state-of-the-art any-to-any Clos networks without compromising the performance of LLM training.

The use of big data in official statistics and the applied sciences is accelerating, but statistics computed using only big data often suffer from substantial selection bias. This leads to inaccurate estimation and invalid statistical inference. We rectify the issue for a broad class of linear and nonlinear statistics by producing estimating equations that combine big data with a probability sample. Under weak assumptions about an unknown superpopulation, we show that our integrated estimator is consistent and asymptotically unbiased with an asymptotic normal distribution. Variance estimators with respect to both the sampling design alone and jointly with the superpopulation are obtained at once using a single, unified theoretical approach. A surprising corollary is that strategies minimising the design variance almost minimise the joint variance when the population and sample sizes are large. The integrated estimator is shown to be more efficient than its survey-only counterpart if dependence between sample membership indicators is small and the finite population is large. We illustrate our method for quantiles, the Gini index, linear regression coefficients and maximum likelihood estimators where the sampling design is stratified simple random sampling without replacement. Our results are illustrated in a simulation of individual Australian incomes.

In high dimensional variable selection problems, statisticians often seek to design multiple testing procedures that control the False Discovery Rate (FDR), while concurrently identifying a greater number of relevant variables. Model-X methods, such as Knockoffs and conditional randomization tests, achieve the primary goal of finite-sample FDR control, assuming a known distribution of covariates. However, whether these methods can also achieve the secondary goal of maximizing discoveries remains uncertain. In fact, designing procedures to discover more relevant variables with finite-sample FDR control is a largely open question, even within the arguably simplest linear models. In this paper, we develop near-optimal multiple testing procedures for high dimensional Bayesian linear models with isotropic covariates. We introduce Model-X procedures that provably control the frequentist FDR from finite samples, even when the model is misspecified, and conjecturally achieve near-optimal power when the data follow the Bayesian linear model. Our proposed procedure, PoEdCe, incorporates three key ingredients: Posterior Expectation, distilled Conditional randomization test (dCRT), and the Benjamini-Hochberg procedure with e-values (eBH). The optimality conjecture of PoEdCe is based on a heuristic calculation of its asymptotic true positive proportion (TPP) and false discovery proportion (FDP), which is supported by methods from statistical physics as well as extensive numerical simulations. Our result establishes the Bayesian linear model as a benchmark for comparing the power of various multiple testing procedures.

The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.

北京阿比特科技有限公司