亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose the Minimum Regularized Covariance Trace (MRCT) estimator, a novel method for robust covariance estimation and functional outlier detection. The MRCT estimator employs a subset-based approach that prioritizes subsets exhibiting greater centrality based on the generalization of the Mahalanobis distance, resulting in a fast-MCD type algorithm. Notably, the MRCT estimator handles high-dimensional data sets without the need for preprocessing or dimension reduction techniques, due to the internal smoothening whose amount is determined by the regularization parameter $\alpha > 0$. The selection of the regularization parameter $\alpha$ is automated. The proposed method adapts seamlessly to sparsely observed data by working directly with the finite matrix of basis coefficients. An extensive simulation study demonstrates the efficacy of the MRCT estimator in terms of robust covariance estimation and automated outlier detection, emphasizing the balance between noise exclusion and signal preservation achieved through appropriate selection of $\alpha$. The method converges fast in practice and performs favorably when compared to other functional outlier detection methods.

相關內容

We present a novel computational model for the dynamics of alveolar recruitment/derecruitment (RD), which reproduces the underlying characteristics typically observed in injured lungs. The basic idea is a pressure- and time-dependent variation of the stress-free reference volume in reduced dimensional viscoelastic elements representing the acinar tissue. We choose a variable reference volume triggered by critical opening and closing pressures in a time-dependent manner from a straightforward mechanical point of view. In the case of (partially and progressively) collapsing alveolar structures, the volume available for expansion during breathing reduces and vice versa, eventually enabling consideration of alveolar collapse and reopening in our model. We further introduce a method for patient-specific determination of the underlying critical parameters of the new alveolar RD dynamics when integrated into the tissue elements, referred to as terminal units, of a spatially resolved physics-based lung model that simulates the human respiratory system in an anatomically correct manner. Relevant patient-specific parameters of the terminal units are herein determined based on medical image data and the macromechanical behavior of the lung during artificial ventilation. We test the whole modeling approach for a real-life scenario by applying it to the clinical data of a mechanically ventilated patient. The generated lung model is capable of reproducing clinical measurements such as tidal volume and pleural pressure during various ventilation maneuvers. We conclude that this new model is an important step toward personalized treatment of ARDS patients by considering potentially harmful mechanisms - such as cyclic RD and overdistension - and might help in the development of relevant protective ventilation strategies to reduce ventilator-induced lung injury (VILI).

In this paper we present and analyze a weighted residual a posteriori error estimate for an optimal control problem. The problem involves a nondifferentiable cost functional, a state equation with an integral fractional Laplacian, and control constraints. We employ subdifferentiation in the context of nondifferentiable convex analysis to obtain first-order optimality conditions. Piecewise linear polynomials are utilized to approximate the solutions of the state and adjoint equations. The control variable is discretized using the variational discretization method. Upper and lower bounds for the a posteriori error estimate of the finite element approximation of the optimal control problem are derived. In the region where 3/2 < alpha < 2, the residuals do not satisfy the L2(Omega) regularity. To address this issue, an additional weight is included in the weighted residual estimator, which is based on a power of the distance from the mesh skeleton. Furthermore, we propose an h-adaptive algorithm driven by the posterior view error estimator, utilizing the Dorfler labeling criterion. The convergence analysis results show that the approximation sequence generated by the adaptive algorithm converges at the optimal algebraic rate. Finally, numerical experiments are conducted to validate the theoretical results.

This paper proposes a method for extracting a lightweight subset from a text-to-speech (TTS) corpus ensuring synthetic speech quality. In recent years, methods have been proposed for constructing large-scale TTS corpora by collecting diverse data from massive sources such as audiobooks and YouTube. Although these methods have gained significant attention for enhancing the expressive capabilities of TTS systems, they often prioritize collecting vast amounts of data without considering practical constraints like storage capacity and computation time in training, which limits the available data quantity. Consequently, the need arises to efficiently collect data within these volume constraints. To address this, we propose a method for selecting the core subset~(known as \textit{core-set}) from a TTS corpus on the basis of a \textit{diversity metric}, which measures the degree to which a subset encompasses a wide range. Experimental results demonstrate that our proposed method performs significantly better than the baseline phoneme-balanced data selection across language and corpus size.

In this paper, we introduce Libriheavy, a large-scale ASR corpus consisting of 50,000 hours of read English speech derived from LibriVox. To the best of our knowledge, Libriheavy is the largest freely-available corpus of speech with supervisions. Different from other open-sourced datasets that only provide normalized transcriptions, Libriheavy contains richer information such as punctuation, casing and text context, which brings more flexibility for system building. Specifically, we propose a general and efficient pipeline to locate, align and segment the audios in previously published Librilight to its corresponding texts. The same as Librilight, Libriheavy also has three training subsets small, medium, large of the sizes 500h, 5000h, 50000h respectively. We also extract the dev and test evaluation sets from the aligned audios and guarantee there is no overlapping speakers and books in training sets. Baseline systems are built on the popular CTC-Attention and transducer models. Additionally, we open-source our dataset creatation pipeline which can also be used to other audio alignment tasks.

In this work, we consider the problem of goodness-of-fit (GoF) testing for parametric models -- for example, testing whether observed data follows a logistic regression model. This testing problem involves a composite null hypothesis, due to the unknown values of the model parameters. In some special cases, co-sufficient sampling (CSS) can remove the influence of these unknown parameters via conditioning on a sufficient statistic -- often, the maximum likelihood estimator (MLE) of the unknown parameters. However, many common parametric settings (including logistic regression) do not permit this approach, since conditioning on a sufficient statistic leads to a powerless test. The recent approximate co-sufficient sampling (aCSS) framework of Barber and Janson (2022) offers an alternative, replacing sufficiency with an approximately sufficient statistic (namely, a noisy version of the MLE). This approach recovers power in a range of settings where CSS cannot be applied, but can only be applied in settings where the unconstrained MLE is well-defined and well-behaved, which implicitly assumes a low-dimensional regime. In this work, we extend aCSS to the setting of constrained and penalized maximum likelihood estimation, so that more complex estimation problems can now be handled within the aCSS framework, including examples such as mixtures-of-Gaussians (where the unconstrained MLE is not well-defined due to degeneracy) and high-dimensional Gaussian linear models (where the MLE can perform well under regularization, such as an $\ell_1$ penalty or a shape constraint).

In the present paper we introduce new optimization algorithms for the task of density ratio estimation. More precisely, we consider extending the well-known KMM method using the construction of a suitable loss function, in order to encompass more general situations involving the estimation of density ratio with respect to subsets of the training data and test data, respectively. The associated codes can be found at //github.com/CDAlecsa/Generalized-KMM.

In this paper, we propose the Ordered Median Tree Location Problem (OMT). The OMT is a single-allocation facility location problem where p facilities must be placed on a network connected by a non-directed tree. The objective is to minimize the sum of the ordered weighted averaged allocation costs plus the sum of the costs of connecting the facilities in the tree. We present different MILP formulations for the OMT based on properties of the minimum spanning tree problem and the ordered median optimization. Given that ordered median hub location problems are rather difficult to solve we have improved the OMT solution performance by introducing covering variables in a valid reformulation plus developing two pre-processing phases to reduce the size of this formulations. In addition, we propose a Benders decomposition algorithm to approach the OMT. We establish an empirical comparison between these new formulations and we also provide enhancements that together with a proper formulation allow to solve medium size instances on general random graphs.

We introduce a novel methodology that leverages the strength of Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD) protocol in the optimization of quantum circuits comprised of systems with $N_{Q}$ qubits. The primary objective is to utilize physics-inspired deep learning techniques to accurately solve the time evolution of the different physical observables within the quantum system. To accomplish this objective, we embed the necessary physical information into an underlying neural network to effectively tackle the problem. In particular, we impose the hermiticity condition on all physical observables and make use of the principle of least action, guaranteeing the acquisition of the most appropriate counterdiabatic terms based on the underlying physics. The proposed approach offers a dependable alternative to address the CD driving problem, free from the constraints typically encountered in previous methodologies relying on classical numerical approximations. Our method provides a general framework to obtain optimal results from the physical observables relevant to the problem, including the external parameterization in time known as scheduling function, the gauge potential or operator involving the non-adiabatic terms, as well as the temporal evolution of the energy levels of the system, among others. The main applications of this methodology have been the $\mathrm{H_{2}}$ and $\mathrm{LiH}$ molecules, represented by a 2-qubit and 4-qubit systems employing the STO-3G basis. The presented results demonstrate the successful derivation of a desirable decomposition for the non-adiabatic terms, achieved through a linear combination utilizing Pauli operators. This attribute confers significant advantages to its practical implementation within quantum computing algorithms.

This study focuses on the use of model and data fusion for improving the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions of separated flows. In particular, our goal is to develop of models that not-only assimilate sparse experimental data to improve performance in computational models, but also generalize to unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the Ensemble Kalman Filtering approach (EnKF), to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via a parameterization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected velocity profiles, skin friction, and pressure coefficients for separated flows. Despite using of observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the 2D-bump and modified BFS. Significant improvement is observed in the quantities of interest, i.e., skin friction coefficient ($C_f$) and pressure coefficient ($C_p$) for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for external, unseparated flows, such as flow around a NACA-0012 airfoil without any danger of extrapolation, and that the individually calibrated terms in the SA model are targeted towards specific flow-physics wherein the calibrated production term improves the re-circulation zone while destruction improves the recovery zone.

In this paper, we propose the Quantum Data Center (QDC), an architecture combining Quantum Random Access Memory (QRAM) and quantum networks. We give a precise definition of QDC, and discuss its possible realizations and extensions. We discuss applications of QDC in quantum computation, quantum communication, and quantum sensing, with a primary focus on QDC for $T$-gate resources, QDC for multi-party private quantum communication, and QDC for distributed sensing through data compression. We show that QDC will provide efficient, private, and fast services as a future version of data centers.

北京阿比特科技有限公司