In this work, we study dialogue scenarios that start from chit-chat but eventually switch to task-related services, and investigate how a unified dialogue model, which can engage in both chit-chat and task-oriented dialogues, takes the initiative during the dialogue mode transition from chit-chat to task-oriented in a coherent and cooperative manner. We firstly build a {transition info extractor} (TIE) that keeps track of the preceding chit-chat interaction and detects the potential user intention to switch to a task-oriented service. Meanwhile, in the unified model, a {transition sentence generator} (TSG) is extended through efficient Adapter tuning and transition prompt learning. When the TIE successfully finds task-related information from the preceding chit-chat, such as a transition domain, then the TSG is activated automatically in the unified model to initiate this transition by generating a transition sentence under the guidance of transition information extracted by TIE. The experimental results show promising performance regarding the proactive transitions. We achieve an additional large improvement on TIE model by utilizing Conditional Random Fields (CRF). The TSG can flexibly generate transition sentences while maintaining the unified capabilities of normal chit-chat and task-oriented response generation.
In this work, we propose a position and orientation-aware one-shot learning framework for medical action recognition from signal data. The proposed framework comprises two stages and each stage includes signal-level image generation (SIG), cross-attention (CsA), dynamic time warping (DTW) modules and the information fusion between the proposed privacy-preserved position and orientation features. The proposed SIG method aims to transform the raw skeleton data into privacy-preserved features for training. The CsA module is developed to guide the network in reducing medical action recognition bias and more focusing on important human body parts for each specific action, aimed at addressing similar medical action related issues. Moreover, the DTW module is employed to minimize temporal mismatching between instances and further improve model performance. Furthermore, the proposed privacy-preserved orientation-level features are utilized to assist the position-level features in both of the two stages for enhancing medical action recognition performance. Extensive experimental results on the widely-used and well-known NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD datasets all demonstrate the effectiveness of the proposed method, which outperforms the other state-of-the-art methods with general dataset partitioning by 2.7%, 6.2% and 4.1%, respectively.
In this work we introduce the CitrusFarm dataset, a comprehensive multimodal sensory dataset collected by a wheeled mobile robot operating in agricultural fields. The dataset offers stereo RGB images with depth information, as well as monochrome, near-infrared and thermal images, presenting diverse spectral responses crucial for agricultural research. Furthermore, it provides a range of navigational sensor data encompassing wheel odometry, LiDAR, inertial measurement unit (IMU), and GNSS with Real-Time Kinematic (RTK) as the centimeter-level positioning ground truth. The dataset comprises seven sequences collected in three fields of citrus trees, featuring various tree species at different growth stages, distinctive planting patterns, as well as varying daylight conditions. It spans a total operation time of 1.7 hours, covers a distance of 7.5 km, and constitutes 1.3 TB of data. We anticipate that this dataset can facilitate the development of autonomous robot systems operating in agricultural tree environments, especially for localization, mapping and crop monitoring tasks. Moreover, the rich sensing modalities offered in this dataset can also support research in a range of robotics and computer vision tasks, such as place recognition, scene understanding, object detection and segmentation, and multimodal learning. The dataset, in conjunction with related tools and resources, is made publicly available at //github.com/UCR-Robotics/Citrus-Farm-Dataset.
In this study, we investigated the relationship between sailboat technical specifications and their prices, as well as regional pricing influences. Utilizing a dataset encompassing characteristics like length, beam, draft, displacement, sail area, and waterline, we applied multiple machine learning models to predict sailboat prices. The gradient descent model demonstrated superior performance, producing the lowest MSE and MAE. Our analysis revealed that monohulled boats are generally more affordable than catamarans, and that certain specifications such as length, beam, displacement, and sail area directly correlate with higher prices. Interestingly, lower draft was associated with higher listing prices. We also explored regional price determinants and found that the United States tops the list in average sailboat prices, followed by Europe, Hong Kong, and the Caribbean. Contrary to our initial hypothesis, a country's GDP showed no direct correlation with sailboat prices. Utilizing a 50% cross-validation method, our models yielded consistent results across test groups. Our research offers a machine learning-enhanced perspective on sailboat pricing, aiding prospective buyers in making informed decisions.
We consider signal source localization from range-difference measurements. First, we give some readily-checked conditions on measurement noises and sensor deployment to guarantee the asymptotic identifiability of the model and show the consistency and asymptotic normality of the maximum likelihood (ML) estimator. Then, we devise an estimator that owns the same asymptotic property as the ML one. Specifically, we prove that the negative log-likelihood function converges to a function, which has a unique minimum and positive definite Hessian at the true source's position. Hence, it is promising to execute local iterations, e.g., the Gauss-Newton (GN) algorithm, following a consistent estimate. The main issue involved is obtaining a preliminary consistent estimate. To this aim, we construct a linear least-squares problem via algebraic operation and constraint relaxation and obtain a closed-form solution. We then focus on deriving and eliminating the bias of the linear least-squares estimator, which yields an asymptotically unbiased (thus consistent) estimate. Noting that the bias is a function of the noise variance, we further devise a consistent noise variance estimator that involves $3$-order polynomial rooting. Based on the preliminary consistent location estimate, a one-step GN iteration suffices to achieve the same asymptotic property as the ML estimator. Simulation results demonstrate the superiority of our proposed algorithm in the large sample case.
In this article we investigate smoothing (i.e., optimisation-based) estimation techniques for robot localization using an IMU aided by other localization sensors. We more particularly focus on Invariant Smoothing (IS), a variant based on the use of nontrivial Lie groups from robotics. We study the recently introduced Two Frames Group (TFG), and prove it can fit into the framework of Invariant Smoothing in order to better take into account the IMU biases, as compared to the state-of-the-art in robotics. Experiments based on the KITTI dataset show the proposed framework compares favorably to the state-of-the-art smoothing methods in terms of robustness in some challenging situations.
In this paper, we investigate how the initial models and the final models for the polynomial functors can be uniformly specified in matching logic.
In this work, we tackle the problem of bandwidth estimation (BWE) for real-time communication systems; however, in contrast to previous works, we leverage the vast efforts of prior heuristic-based BWE methods and synergize these approaches with deep learning-based techniques. Our work addresses challenges in generalizing to unseen network dynamics and extracting rich representations from prior experience, two key challenges in integrating data-driven bandwidth estimators into real-time systems. To that end, we propose Merlin, the first purely offline, data-driven solution to BWE that harnesses prior heuristic-based methods to extract an expert BWE policy. Through a series of experiments, we demonstrate that Merlin surpasses state-of-the-art heuristic-based and deep learning-based bandwidth estimators in terms of objective quality of experience metrics while generalizing beyond the offline world to in-the-wild network deployments where Merlin achieves a 42.85% and 12.8% reduction in packet loss and delay, respectively, when compared against WebRTC in inter-continental videoconferencing calls. We hope that Merlin's offline-oriented design fosters new strategies for real-time network control.
In this work, we investigate two popular end-to-end automatic speech recognition (ASR) models, namely Connectionist Temporal Classification (CTC) and RNN-Transducer (RNN-T), for offline recognition of voice search queries, with up to 2B model parameters. The encoders of our models use the neural architecture of Google's universal speech model (USM), with additional funnel pooling layers to significantly reduce the frame rate and speed up training and inference. We perform extensive studies on vocabulary size, time reduction strategy, and its generalization performance on long-form test sets. Despite the speculation that, as the model size increases, CTC can be as good as RNN-T which builds label dependency into the prediction, we observe that a 900M RNN-T clearly outperforms a 1.8B CTC and is more tolerant to severe time reduction, although the WER gap can be largely removed by LM shallow fusion.
In this work, we introduce OmniDrones, an efficient and flexible platform tailored for reinforcement learning in drone control, built on Nvidia's Omniverse Isaac Sim. It employs a bottom-up design approach that allows users to easily design and experiment with various application scenarios on top of GPU-parallelized simulations. It also offers a range of benchmark tasks, presenting challenges ranging from single-drone hovering to over-actuated system tracking. In summary, we propose an open-sourced drone simulation platform, equipped with an extensive suite of tools for drone learning. It includes 4 drone models, 5 sensor modalities, 4 control modes, over 10 benchmark tasks, and a selection of widely used RL baselines. To showcase the capabilities of OmniDrones and to support future research, we also provide preliminary results on these benchmark tasks. We hope this platform will encourage further studies on applying RL to practical drone systems.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.