Estimation of a conditional mean (linking a set of features to an outcome of interest) is a fundamental statistical task. While there is an appeal to flexible nonparametric procedures, effective estimation in many classical nonparametric function spaces (e.g., multivariate Sobolev spaces) can be prohibitively difficult -- both statistically and computationally -- especially when the number of features is large. In this paper, we present (penalized) sieve estimators for regression in nonparametric tensor product spaces: These spaces are more amenable to multivariate regression, and allow us to, in-part, avoid the curse of dimensionality. Our estimators can be easily applied to multivariate nonparametric problems and have appealing statistical and computational properties. Moreover, they can effectively leverage additional structures such as feature sparsity. In this manuscript, we give theoretical guarantees, indicating that the predictive performance of our estimators scale favorably in dimension. In addition, we also present numerical examples to compare the finite-sample performance of the proposed estimators with several popular machine learning methods.
Mark-point dependence plays a critical role in research problems that can be fitted into the general framework of marked point processes. In this work, we focus on adjusting for mark-point dependence when estimating the mean and covariance functions of the mark process, given independent replicates of the marked point process. We assume that the mark process is a Gaussian process and the point process is a log-Gaussian Cox process, where the mark-point dependence is generated through the dependence between two latent Gaussian processes. Under this framework, naive local linear estimators ignoring the mark-point dependence can be severely biased. We show that this bias can be corrected using a local linear estimator of the cross-covariance function and establish uniform convergence rates of the bias-corrected estimators. Furthermore, we propose a test statistic based on local linear estimators for mark-point independence, which is shown to converge to an asymptotic normal distribution in a parametric $\sqrt{n}$-convergence rate. Model diagnostics tools are developed for key model assumptions and a robust functional permutation test is proposed for a more general class of mark-point processes. The effectiveness of the proposed methods is demonstrated using extensive simulations and applications to two real data examples.
Support vector machine (SVM) is a powerful classification method that has achieved great success in many fields. Since its performance can be seriously impaired by redundant covariates, model selection techniques are widely used for SVM with high dimensional covariates. As an alternative to model selection, significant progress has been made in the area of model averaging in the past decades. Yet no frequentist model averaging method was considered for SVM. This work aims to fill the gap and to propose a frequentist model averaging procedure for SVM which selects the optimal weight by cross validation. Even when the number of covariates diverges at an exponential rate of the sample size, we show asymptotic optimality of the proposed method in the sense that the ratio of its hinge loss to the lowest possible loss converges to one. We also derive the convergence rate which provides more insights to model averaging. Compared to model selection methods of SVM which require a tedious but critical task of tuning parameter selection, the model averaging method avoids the task and shows promising performances in the empirical studies.
We propose a penalized nonparametric approach to estimating the quantile regression process (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep neural networks and introduce a novel penalty function to enforce non-crossing of quantile regression curves. We establish the non-asymptotic excess risk bounds for the estimated QRP and derive the mean integrated squared error for the estimated QRP under mild smoothness and regularity conditions. To establish these non-asymptotic risk and estimation error bounds, we also develop a new error bound for approximating $C^s$ smooth functions with $s >0$ and their derivatives using ReQU activated neural networks. This is a new approximation result for ReQU networks and is of independent interest and may be useful in other problems. Our numerical experiments demonstrate that the proposed method is competitive with or outperforms two existing methods, including methods using reproducing kernels and random forests, for nonparametric quantile regression.
In this work we are interested in general linear inverse problems where the corresponding forward problem is solved iteratively using fixed point methods. Then one-shot methods, which iterate at the same time on the forward problem solution and on the inverse problem unknown, can be applied. We analyze two variants of the so-called multi-step one-shot methods and establish sufficient conditions on the descent step for their convergence, by studying the eigenvalues of the block matrix of the coupled iterations. Several numerical experiments are provided to illustrate the convergence of these methods in comparison with the classical usual and shifted gradient descent. In particular, we observe that very few inner iterations on the forward problem are enough to guarantee good convergence of the inversion algorithm.
With the aid of hardware and software developments, there has been a surge of interests in solving partial differential equations by deep learning techniques, and the integration with domain decomposition strategies has recently attracted considerable attention due to its enhanced representation and parallelization capacity of the network solution. While there are already several works that substitute the numerical solver of overlapping Schwarz methods with the deep learning approach, the non-overlapping counterpart has not been thoroughly studied yet because of the inevitable interface overfitting problem that would propagate the errors to neighbouring subdomains and eventually hamper the convergence of outer iteration. In this work, a novel learning approach, i.e., the compensated deep Ritz method, is proposed to enable the flux transmission across subregion interfaces with guaranteed accuracy, thereby allowing us to construct effective learning algorithms for realizing the more general non-overlapping domain decomposition methods in the presence of overfitted interface conditions. Numerical experiments on a series of elliptic boundary value problems including the regular and irregular interfaces, low and high dimensions, smooth and high-contrast coefficients on multidomains are carried out to validate the effectiveness of our proposed domain decomposition learning algorithms.
We showcase a variety of functions and classes that implement sampling procedures with improved exploration of the parameter space assisted by machine learning. Special attention is paid to setting sane defaults with the objective that adjustments required by different problems remain minimal. This collection of routines can be employed for different types of analysis, from finding bounds on the parameter space to accumulating samples in areas of interest. In particular, we discuss two methods assisted by incorporating different machine learning models: regression and classification. We show that a machine learning classifier can provide higher efficiency for exploring the parameter space. Also, we introduce a boosting technique to improve the slow convergence at the start of the process. The use of these routines is better explained with the help of a few examples that illustrate the type of results one can obtain. We also include examples of the code used to obtain the examples as well as descriptions of the adjustments that can be made to adapt the calculation to other problems. We finalize by showing the impact of these techniques when exploring the parameter space of the two Higgs doublet model that matches the measured Higgs Boson signal strength. The code used for this paper and instructions on how to use it are available on the web.
Schwarz methods use a decomposition of the computational domain into subdomains and need to put boundary conditions on the subdomain boundaries. In domain truncation one restricts the unbounded domain to a bounded computational domain and also needs to put boundary conditions on the computational domain boundaries. It turns out to be fruitful to think of the domain decomposition in Schwarz methods as truncation of the domain onto subdomains. The first truly optimal Schwarz method that converges in a finite number of steps was proposed in 1994 and used precisely transparent boundary conditions as transmission conditions between subdomains. Approximating these transparent boundary conditions for fast convergence of Schwarz methods led to the development of optimized Schwarz methods -- a name that has become common for Schwarz methods based on domain truncation. Compared to classical Schwarz methods which use simple Dirichlet transmission conditions and have been successfully used in a wide range of applications, optimized Schwarz methods are much less well understood, mainly due to their more sophisticated transmission conditions. This present situation is the motivation for our survey: to give a comprehensive review and precise exploration of convergence behaviors of optimized Schwarz methods based on Fourier analysis taking into account the original boundary conditions, many subdomain decompositions and layered media. The transmission conditions we study include the lowest order absorbing conditions (Robin), and also more advanced perfectly matched layers (PML), both developed first for domain truncation.
Deep operator learning has emerged as a promising tool for reduced-order modelling and PDE model discovery. Leveraging the expressive power of deep neural networks, especially in high dimensions, such methods learn the mapping between functional state variables. While proposed methods have assumed noise only in the dependent variables, experimental and numerical data for operator learning typically exhibit noise in the independent variables as well, since both variables represent signals that are subject to measurement error. In regression on scalar data, failure to account for noisy independent variables can lead to biased parameter estimates. With noisy independent variables, linear models fitted via ordinary least squares (OLS) will show attenuation bias, wherein the slope will be underestimated. In this work, we derive an analogue of attenuation bias for linear operator regression with white noise in both the independent and dependent variables. In the nonlinear setting, we computationally demonstrate underprediction of the action of the Burgers operator in the presence of noise in the independent variable. We propose error-in-variables (EiV) models for two operator regression methods, MOR-Physics and DeepONet, and demonstrate that these new models reduce bias in the presence of noisy independent variables for a variety of operator learning problems. Considering the Burgers operator in 1D and 2D, we demonstrate that EiV operator learning robustly recovers operators in high-noise regimes that defeat OLS operator learning. We also introduce an EiV model for time-evolving PDE discovery and show that OLS and EiV perform similarly in learning the Kuramoto-Sivashinsky evolution operator from corrupted data, suggesting that the effect of bias in OLS operator learning depends on the regularity of the target operator.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.