亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Natural Language Processing (NLP) techniques are being used more frequently to improve high-tech Augmentative and Alternative Communication (AAC), but many of these techniques are integrated without the inclusion of the users' perspectives. Autistic adults are particularly neglected in the design of AAC tools. We conducted in-depth interviews with 12 autistic adults to find the pain points of current AAC and determine what technological advances they might find helpful. We found that in addition to technological issues, there are many societal issues as well. We found 9 different categories of themes from our interviews: input flexibility, output flexibility, selecting or adapting AAC for a good fit, when to start or swap AAC, benefits, access as an adult, stumbling blocks for continued use, social concerns, and control of communication. In this paper, we go through these categories in depth and then suggest possible guidelines for developers, NLP researchers, and policy makers.

相關內容

AAC(Advanced Audio Coding進階音(yin)訊(xun)編(bian)碼),出(chu)現(xian)于1997年,基于MPEG-2的音(yin)頻編(bian)碼技術。

The development of Large Language Models (LLMs) in various languages has been advancing, but the combination of non-English languages with domain-specific contexts remains underexplored. This paper presents our findings from training and evaluating a Japanese business domain-specific LLM designed to better understand business-related documents, such as the news on current affairs, technical reports, and patents. Additionally, LLMs in this domain require regular updates to incorporate the most recent knowledge. Therefore, we also report our findings from the first experiments and evaluations involving updates to this LLM using the latest article data, which is an important problem setting that has not been addressed in previous research. From our experiments on a newly created benchmark dataset for question answering in the target domain, we found that (1) our pretrained model improves QA accuracy without losing general knowledge, and (2) a proper mixture of the latest and older texts in the training data for the update is necessary. Our pretrained model and business domain benchmark are publicly available to support further studies.

The wide deployment of Large Language Models (LLMs) has given rise to strong demands for optimizing their inference performance. Today's techniques serving this purpose primarily focus on reducing latency and improving throughput through algorithmic and hardware enhancements, while largely overlooking their privacy side effects, particularly in a multi-user environment. In our research, for the first time, we discovered a set of new timing side channels in LLM systems, arising from shared caches and GPU memory allocations, which can be exploited to infer both confidential system prompts and those issued by other users. These vulnerabilities echo security challenges observed in traditional computing systems, highlighting an urgent need to address potential information leakage in LLM serving infrastructures. In this paper, we report novel attack strategies designed to exploit such timing side channels inherent in LLM deployments, specifically targeting the Key-Value (KV) cache and semantic cache widely used to enhance LLM inference performance. Our approach leverages timing measurements and classification models to detect cache hits, allowing an adversary to infer private prompts with high accuracy. We also propose a token-by-token search algorithm to efficiently recover shared prompt prefixes in the caches, showing the feasibility of stealing system prompts and those produced by peer users. Our experimental studies on black-box testing of popular online LLM services demonstrate that such privacy risks are completely realistic, with significant consequences. Our findings underscore the need for robust mitigation to protect LLM systems against such emerging threats.

Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation, offering exceptional flexibility and performance across a diverse range of applications. INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions, providing critical advantages such as resolution independence, memory efficiency, and generalisation beyond discretised data structures. Their ability to solve complex inverse problems makes them particularly effective for tasks including audio reconstruction, image representation, 3D object reconstruction, and high-dimensional data synthesis. This survey provides a comprehensive review of state-of-the-art INR methods, introducing a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure optimisation. We rigorously analyse their critical properties, such as full differentiability, smoothness, compactness, and adaptability to varying resolutions while also examining their strengths and limitations in addressing locality biases and capturing fine details. Our experimental comparison offers new insights into the trade-offs between different approaches, showcasing the capabilities and challenges of the latest INR techniques across various tasks. In addition to identifying areas where current methods excel, we highlight key limitations and potential avenues for improvement, such as developing more expressive activation functions, enhancing positional encoding mechanisms, and improving scalability for complex, high-dimensional data. This survey serves as a roadmap for researchers, offering practical guidance for future exploration in the field of INRs. We aim to foster new methodologies by outlining promising research directions for INRs and applications.

The automatic generation of hints by Large Language Models (LLMs) within Intelligent Tutoring Systems (ITSs) has shown potential to enhance student learning. However, generating pedagogically sound hints that address student misconceptions and adhere to specific educational objectives remains challenging. This work explores using LLMs (GPT-4o and Llama-3-8B-instruct) as teachers to generate effective hints for students simulated through LLMs (GPT-3.5-turbo, Llama-3-8B-Instruct, or Mistral-7B-instruct-v0.3) tackling math exercises designed for human high-school students, and designed using cognitive science principles. We present here the study of several dimensions: 1) identifying error patterns made by simulated students on secondary-level math exercises; 2) developing various prompts for GPT-4o as a teacher and evaluating their effectiveness in generating hints that enable simulated students to self-correct; and 3) testing the best-performing prompts, based on their ability to produce relevant hints and facilitate error correction, with Llama-3-8B-Instruct as the teacher, allowing for a performance comparison with GPT-4o. The results show that model errors increase with higher temperature settings. Notably, when hints are generated by GPT-4o, the most effective prompts include prompts tailored to specific errors as well as prompts providing general hints based on common mathematical errors. Interestingly, Llama-3-8B-Instruct as a teacher showed better overall performance than GPT-4o. Also the problem-solving and response revision capabilities of the LLMs as students, particularly GPT-3.5-turbo, improved significantly after receiving hints, especially at lower temperature settings. However, models like Mistral-7B-Instruct demonstrated a decline in performance as the temperature increased.

The Traveling Salesman Problem (TSP) in the two-dimensional Euclidean plane is among the oldest and most famous NP-hard optimization problems. In breakthrough works, Arora [J. ACM 1998] and Mitchell [SICOMP 1999] gave the first polynomial time approximation schemes. The running time of their approximation schemes was improved by Rao and Smith [STOC 1998] to $(1/\varepsilon)^{O(1/\varepsilon)} n \log n$. Bartal and Gottlieb [FOCS 2013] gave an approximation scheme of running time $2^{(1/\varepsilon)^{O(1)}} n$, which is optimal in $n$. Recently, Kisfaludi-Bak, Nederlof, and W\k{e}grzycki [FOCS 2021] gave a $2^{O(1/\varepsilon)} n \log n$ time approximation scheme, achieving the optimal running time in $\varepsilon$ under the Gap-ETH conjecture. In our work, we give a $2^{O(1/\varepsilon)} n$ time approximation scheme, achieving the optimal running time both in $n$ and in $\varepsilon$ under the Gap-ETH conjecture.

This paper presents a simplification of robotic system model analysis due to the transfer of Robotic System Hierarchical Petri Net (RSHPN) meta-model properties onto the model of a designed system. Key contributions include: 1) analysis of RSHPN meta-model properties; 2) decomposition of RSHPN analysis into analysis of individual Petri nets, thus the reduction of state space explosion; and 3) transfer of RSHPN meta-model properties onto the produced models, hence elimination of the need for full re-analysis of the RSHPN model when creating new robotic systems. Only task-dependent parts of the model need to be analyzed. This approach streamlines the analysis thus reducing the design time. Moreover, it produces a specification which is a solid foundation for the implementation of the system. The obtained results highlight the potential of Petri nets as a valuable formal framework for analyzing robotic system properties.

Current speech-based LLMs are predominantly trained on extensive ASR and TTS datasets, excelling in tasks related to these domains. However, their ability to handle direct speech-to-speech conversations remains notably constrained. These models often rely on an ASR-to-TTS chain-of-thought pipeline, converting speech into text for processing before generating audio responses, which introduces latency and loses audio features. We propose a method that implicitly internalizes ASR chain of thought into a speech LLM, enhancing its native speech understanding capabilities. Our approach reduces latency and improves the model's native understanding of speech, paving the way for more efficient and natural real-time audio interactions. We also release a large-scale synthetic conversational dataset to facilitate further research.

Alongside the rapid development of Large Language Models (LLMs), there has been a notable increase in efforts to integrate LLM techniques in information retrieval (IR) and search engines (SE). Recently, an additional post-ranking stage is suggested in SE to enhance user satisfaction in practical applications. Nevertheless, research dedicated to enhancing the post-ranking stage through LLMs remains largely unexplored. In this study, we introduce a novel paradigm named Large Language Models for Post-Ranking in search engine (LLM4PR), which leverages the capabilities of LLMs to accomplish the post-ranking task in SE. Concretely, a Query-Instructed Adapter (QIA) module is designed to derive the user/item representation vectors by incorporating their heterogeneous features. A feature adaptation step is further introduced to align the semantics of user/item representations with the LLM. Finally, the LLM4PR integrates a learning to post-rank step, leveraging both a main task and an auxiliary task to fine-tune the model to adapt the post-ranking task. Experiment studies demonstrate that the proposed framework leads to significant improvements and exhibits state-of-the-art performance compared with other alternatives.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司