亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently proliferated semantic communications (SC) aim at effectively transmitting the semantics conveyed by the source and accurately interpreting the meaning at the destination. While such a paradigm holds the promise of making wireless communications more intelligent, it also suffers from severe semantic security issues, such as eavesdropping, privacy leaking, and spoofing, due to the open nature of wireless channels and the fragility of neural modules. Previous works focus more on the robustness of SC via offline adversarial training of the whole system, while online semantic protection, a more practical setting in the real world, is still largely under-explored. To this end, we present SemProtector, a unified framework that aims to secure an online SC system with three hot-pluggable semantic protection modules. Specifically, these protection modules are able to encrypt semantics to be transmitted by an encryption method, mitigate privacy risks from wireless channels by a perturbation mechanism, and calibrate distorted semantics at the destination by a semantic signature generation method. Our framework enables an existing online SC system to dynamically assemble the above three pluggable modules to meet customized semantic protection requirements, facilitating the practical deployment in real-world SC systems. Experiments on two public datasets show the effectiveness of our proposed SemProtector, offering some insights of how we reach the goal of secrecy, privacy and integrity of an SC system. Finally, we discuss some future directions for the semantic protection.

相關內容

SC:International Conference for High Performance Computing, Networking, Storage, and Analysis。 Explanation:高性能計算、網絡、存儲和分析國際會議。 Publisher:IEEE。 SIT:

Voxel-based multiple testing is widely used in neuroimaging data analysis. Traditional false discovery rate (FDR) control methods often ignore the spatial dependence among the voxel-based tests and thus suffer from substantial loss of testing power. While recent spatial FDR control methods have emerged, their validity and optimality remain questionable when handling the complex spatial dependencies of the brain. Concurrently, deep learning methods have revolutionized image segmentation, a task closely related to voxel-based multiple testing. In this paper, we propose DeepFDR, a novel spatial FDR control method that leverages unsupervised deep learning-based image segmentation to address the voxel-based multiple testing problem. Numerical studies, including comprehensive simulations and Alzheimer's disease FDG-PET image analysis, demonstrate DeepFDR's superiority over existing methods. DeepFDR not only excels in FDR control and effectively diminishes the false nondiscovery rate, but also boasts exceptional computational efficiency highly suited for tackling large-scale neuroimaging data.

Recent studies have presented compelling evidence that large language models (LLMs) can equip embodied agents with the self-driven capability to interact with the world, which marks an initial step toward versatile robotics. However, these efforts tend to overlook the visual richness of open worlds, rendering the entire interactive process akin to "a blindfolded text-based game." Consequently, LLM-based agents frequently encounter challenges in intuitively comprehending their surroundings and producing responses that are easy to understand. In this paper, we propose Steve-Eye, an end-to-end trained large multimodal model designed to address this limitation. Steve-Eye integrates the LLM with a visual encoder which enables it to process visual-text inputs and generate multimodal feedback. In addition, we use a semi-automatic strategy to collect an extensive dataset comprising 850K open-world instruction pairs, empowering our model to encompass three essential functions for an agent: multimodal perception, foundational knowledge base, and skill prediction and planning. Lastly, we develop three open-world evaluation benchmarks, then carry out extensive experiments from a wide range of perspectives to validate our model's capability to strategically act and plan. Codes and datasets will be released.

Trained with an unprecedented scale of data, large language models (LLMs) like ChatGPT and GPT-4 exhibit the emergence of significant reasoning abilities from model scaling. Such a trend underscored the potential of training LLMs with unlimited language data, advancing the development of a universal embodied agent. In this work, we introduce the NavGPT, a purely LLM-based instruction-following navigation agent, to reveal the reasoning capability of GPT models in complex embodied scenes by performing zero-shot sequential action prediction for vision-and-language navigation (VLN). At each step, NavGPT takes the textual descriptions of visual observations, navigation history, and future explorable directions as inputs to reason the agent's current status, and makes the decision to approach the target. Through comprehensive experiments, we demonstrate NavGPT can explicitly perform high-level planning for navigation, including decomposing instruction into sub-goal, integrating commonsense knowledge relevant to navigation task resolution, identifying landmarks from observed scenes, tracking navigation progress, and adapting to exceptions with plan adjustment. Furthermore, we show that LLMs is capable of generating high-quality navigational instructions from observations and actions along a path, as well as drawing accurate top-down metric trajectory given the agent's navigation history. Despite the performance of using NavGPT to zero-shot R2R tasks still falling short of trained models, we suggest adapting multi-modality inputs for LLMs to use as visual navigation agents and applying the explicit reasoning of LLMs to benefit learning-based models.

Recent parameter-efficient finetuning (PEFT) techniques aim to improve over the considerable cost of fully finetuning large pretrained language models (PLM). As different PEFT techniques proliferate, it is becoming difficult to compare them, in particular in terms of (i) the structure and functionality they add to the PLM, (ii) the different types and degrees of efficiency improvements achieved, (iii) performance at different downstream tasks, and (iv) how differences in structure and functionality relate to efficiency and task performance. To facilitate such comparisons, this paper presents a reference architecture which standardises aspects shared by different PEFT techniques, while isolating differences to specific locations and interactions with the standard components. Through this process of standardising and isolating differences, a modular view of PEFT techniques emerges, supporting not only direct comparison of different techniques and their efficiency and task performance, but also systematic exploration of reusability and composability of the different types of finetuned modules. We demonstrate how the reference architecture can be applied to understand properties and relative advantages of PEFT techniques, hence to inform selection of techniques for specific tasks, and design choices for new PEFT techniques.

Most multilingual vision-and-language (V&L) research aims to accomplish multilingual and multimodal capabilities within one model. However, the scarcity of multilingual captions for images has hindered the development. To overcome this obstacle, we propose ICU, Image Caption Understanding, which divides a V&L task into two stages: a V&L model performs image captioning in English, and a multilingual language model (mLM), in turn, takes the caption as the alt text and performs crosslingual language understanding. The burden of multilingual processing is lifted off V&L model and placed on mLM. Since the multilingual text data is relatively of higher abundance and quality, ICU can facilitate the conquering of language barriers for V&L models. In experiments on two tasks across 9 languages in the IGLUE benchmark, we show that ICU can achieve new state-of-the-art results for five languages, and comparable results for the rest.

The convergence of embodied agents and large language models (LLMs) has brought significant advancements to embodied instruction following. Particularly, the strong reasoning capabilities of LLMs make it possible for robots to perform long-horizon tasks without expensive annotated demonstrations. However, public benchmarks for testing the long-horizon reasoning capabilities of language-conditioned robots in various scenarios are still missing. To fill this gap, this work focuses on the tabletop manipulation task and releases a simulation benchmark, \textit{LoHoRavens}, which covers various long-horizon reasoning aspects spanning color, size, space, arithmetics and reference. Furthermore, there is a key modality bridging problem for long-horizon manipulation tasks with LLMs: how to incorporate the observation feedback during robot execution for the LLM's closed-loop planning, which is however less studied by prior work. We investigate two methods of bridging the modality gap: caption generation and learnable interface for incorporating explicit and implicit observation feedback to the LLM, respectively. These methods serve as the two baselines for our proposed benchmark. Experiments show that both methods struggle to solve some tasks, indicating long-horizon manipulation tasks are still challenging for current popular models. We expect the proposed public benchmark and baselines can help the community develop better models for long-horizon tabletop manipulation tasks.

Intent detection and identification from multi-turn dialogue has become a widely explored technique in conversational agents, for example, voice assistants and intelligent customer services. The conventional approaches typically cast the intent mining process as a classification task. Although neural classifiers have proven adept at such classification tasks, the issue of neural network models often impedes their practical deployment in real-world settings. We present a novel graph-based multi-turn dialogue system called , which identifies a user's intent by identifying intent elements and a standard query from a dynamically constructed and extensible intent graph using reinforcement learning. In addition, we provide visualization components to monitor the immediate reasoning path for each turn of a dialogue, which greatly facilitates further improvement of the system.

Generative self-supervised learning (SSL) has exhibited significant potential and garnered increasing interest in graph learning. In this study, we aim to explore the problem of generative SSL in the context of heterogeneous graph learning (HGL). The previous SSL approaches for heterogeneous graphs have primarily relied on contrastive learning, necessitating the design of complex views to capture heterogeneity. However, existing generative SSL methods have not fully leveraged the capabilities of generative models to address the challenges of HGL. In this paper, we present HGCVAE, a novel contrastive variational graph auto-encoder that liberates HGL from the burden of intricate heterogeneity capturing. Instead of focusing on complicated heterogeneity, HGCVAE harnesses the full potential of generative SSL. HGCVAE innovatively consolidates contrastive learning with generative SSL, introducing several key innovations. Firstly, we employ a progressive mechanism to generate high-quality hard negative samples for contrastive learning, utilizing the power of variational inference. Additionally, we present a dynamic mask strategy to ensure effective and stable learning. Moreover, we propose an enhanced scaled cosine error as the criterion for better attribute reconstruction. As an initial step in combining generative and contrastive SSL, HGCVAE achieves remarkable results compared to various state-of-the-art baselines, confirming its superiority.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司