亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Binary-fluid flows can be modeled using the Navier-Stokes-Cahn-Hilliard equations, which represent the boundary between the fluid constituents by a diffuse interface. The diffuse-interface model allows for complex geometries and topological changes of the binary-fluid interface. In this work, we propose an immersed isogeometric analysis framework to solve the Navier-Stokes-Cahn-Hilliard equations on domains with geometrically complex external binary-fluid boundaries. The use of optimal-regularity B-splines results in a computationally efficient higher-order method. The key features of the proposed framework are a generalized Navier-slip boundary condition for the tangential velocity components, Nitsche's method for the convective impermeability boundary condition, and skeleton- and ghost-penalties to guarantee stability. A binary-fluid Taylor-Couette flow is considered for benchmarking. Porous medium simulations demonstrate the ability of the immersed isogeometric analysis framework to model complex binary-fluid flow phenomena such as break-up and coalescence in complex geometries.

相關內容

For time-dependent PDEs, the numerical schemes can be rendered bound-preserving without losing conservation and accuracy, by a post processing procedure of solving a constrained minimization in each time step. Such a constrained optimization can be formulated as a nonsmooth convex minimization, which can be efficiently solved by first order optimization methods, if using the optimal algorithm parameters. By analyzing the asymptotic linear convergence rate of the generalized Douglas-Rachford splitting method, optimal algorithm parameters can be approximately expressed as a simple function of the number of out-of-bounds cells. We demonstrate the efficiency of this simple choice of algorithm parameters by applying such a limiter to cell averages of a discontinuous Galerkin scheme solving phase field equations for 3D demanding problems. Numerical tests on a sophisticated 3D Cahn-Hilliard-Navier-Stokes system indicate that the limiter is high order accurate, very efficient, and well-suited for large-scale simulations. For each time step, it takes at most $20$ iterations for the Douglas-Rachford splitting to enforce bounds and conservation up to the round-off error, for which the computational cost is at most $80N$ with $N$ being the total number of cells.

In this paper, we study a priori error estimates for the finite element approximation of the nonlinear Schr\"{o}dinger-Poisson model. The electron density is defined by an infinite series over all eigenvalues of the Hamiltonian operator. To establish the error estimate, we present a unified theory of error estimates for a class of nonlinear problems. The theory is based on three conditions: 1) the original problem has a solution $u$ which is the fixed point of a compact operator $\Ca$, 2) $\Ca$ is Fr\'{e}chet-differentiable at $u$ and $\Ci-\Ca'[u]$ has a bounded inverse in a neighborhood of $u$, and 3) there exists an operator $\Ca_h$ which converges to $\Ca$ in the neighborhood of $u$. The theory states that $\Ca_h$ has a fixed point $u_h$ which solves the approximate problem. It also gives the error estimate between $u$ and $u_h$, without assumptions on the well-posedness of the approximate problem. We apply the unified theory to the finite element approximation of the Schr\"{o}dinger-Poisson model and obtain optimal error estimate between the numerical solution and the exact solution. Numerical experiments are presented to verify the convergence rates of numerical solutions.

In this paper, we analyze the Nitsche's method for the stationary Navier-Stokes equations on Lipschitz domains under minimal regularity assumptions. Our analysis provides a robust formulation for implementing slip (i.e. Navier) boundary conditions in arbitrarily complex boundaries. The well-posedness of the discrete problem is established using the Banach Ne\v{c}as Babu\v{s}ka and the Banach fixed point theorems under standard small data assumptions, and we also provide optimal convergence rates for the approximation error. Furthermore, we propose a VMS-LES stabilized formulation, which allows the simulation of incompressible fluids at high Reynolds numbers. We validate our theory through numerous numerical tests in well established benchmark problems.

This paper is concerned with the designing, analyzing and implementing linear and nonlinear discretization scheme for the distributed optimal control problem (OCP) with the Cahn-Hilliard (CH) equation as constrained. We propose three difference schemes to approximate and investigate the solution behaviour of the OCP for the CH equation. We present the convergence analysis of the proposed discretization. We verify our findings by presenting numerical experiments.

We study the validity of the Neumann or Born series approach in solving the Helmholtz equation and coefficient identification in related inverse scattering problems. Precisely, we derive a sufficient and necessary condition under which the series is strongly convergent. We also investigate the rate of convergence of the series. The obtained condition is optimal and it can be much weaker than the traditional requirement for the convergence of the series. Our approach makes use of reduction space techniques proposed by Suzuki \cite{Suzuki-1976}. Furthermore we propose an interpolation method that allows the use of the Neumann series in all cases. Finally, we provide several numerical tests with different medium functions and frequency values to validate our theoretical results.

In this work, we introduce a mass, energy, enstrophy and vorticity conserving (MEEVC) mixed finite element discretization for two-dimensional incompressible Navier-Stokes equations as an alternative to the original MEEVC scheme proposed in [A. Palha and M. Gerritsma, J. Comput. Phys., 2017]. The present method can incorporate no-slip boundary conditions. Conservation properties are proven. Supportive numerical experiments with both exact and inexact quadrature are provided.

In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.

In this paper we derive tight lower bounds resolving the hardness status of several fundamental weighted matroid problems. One notable example is budgeted matroid independent set, for which we show there is no fully polynomial-time approximation scheme (FPTAS), indicating the Efficient PTAS of [Doron-Arad, Kulik and Shachnai, SOSA 2023] is the best possible. Furthermore, we show that there is no pseudo-polynomial time algorithm for exact weight matroid independent set, implying the algorithm of [Camerini, Galbiati and Maffioli, J. Algorithms 1992] for representable matroids cannot be generalized to arbitrary matroids. Similarly, we show there is no Fully PTAS for constrained minimum basis of a matroid and knapsack cover with a matroid, implying the existing Efficient PTAS for the former is optimal. For all of the above problems, we obtain unconditional lower bounds in the oracle model, where the independent sets of the matroid can be accessed only via a membership oracle. We complement these results by showing that the same lower bounds hold under standard complexity assumptions, even if the matroid is encoded as part of the instance. All of our bounds are based on a specifically structured family of paving matroids.

This paper deals with the following important research questions. Is it possible to solve challenging advection-dominated diffusion problems in one and two dimensions using Physics Informed Neural Networks (PINN) and Variational Physics Informed Neural Networks (VPINN)? How does it compare to the higher-order and continuity Finite Element Method (FEM)? How to define the loss functions for PINN and VPINN so they converge to the correct solutions? How to select points or test functions for training of PINN and VPINN? We focus on the one-dimensional advection-dominated diffusion problem and the two-dimensional Eriksson-Johnson model problem. We show that the standard Galerkin method for FEM cannot solve this problem. We discuss the stabilization of the advection-dominated diffusion problem with the Petrov-Galerkin (PG) formulation and present the FEM solution obtained with the PG method. We employ PINN and VPINN methods, defining several strong and weak loss functions. We compare the training and solutions of PINN and VPINN methods with higher-order FEM methods.

In this paper we prove convergence for contractive time discretisation schemes for semi-linear stochastic evolution equations with irregular Lipschitz nonlinearities, initial values, and additive or multiplicative Gaussian noise on $2$-smooth Banach spaces $X$. The leading operator $A$ is assumed to generate a strongly continuous semigroup $S$ on $X$, and the focus is on non-parabolic problems. The main result concerns convergence of the uniform strong error $$E_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|_X^p\Big)^{1/p} \to 0\quad (k \to 0),$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$ for final time $T>0$. This generalises previous results to a larger class of admissible nonlinearities and noise as well as rough initial data from the Hilbert space case to more general spaces. We present a proof based on a regularisation argument. Within this scope, we extend previous quantified convergence results for more regular nonlinearity and noise from Hilbert to $2$-smooth Banach spaces. The uniform strong error cannot be estimated in terms of the simpler pointwise strong error $$E_k := \bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|_X^p\bigg)^{1/p},$$ which most of the existing literature is concerned with. Our results are illustrated for a variant of the Schr\"odinger equation, for which previous convergence results were not applicable.

北京阿比特科技有限公司