Ensuring the reliability of cloud systems is critical for both cloud vendors and customers. Cloud systems often rely on virtualization techniques to create instances of hardware resources, such as virtual machines. However, virtualization hinders the observability of cloud systems, making it challenging to diagnose platform-level issues. To improve system observability, we propose to infer functional clusters of instances, i.e., groups of instances having similar functionalities. We first conduct a pilot study on a large-scale cloud system, i.e., Huawei Cloud, demonstrating that instances having similar functionalities share similar communication and resource usage patterns. Motivated by these findings, we formulate the identification of functional clusters as a clustering problem and propose a non-intrusive solution called Prism. Prism adopts a coarse-to-fine clustering strategy. It first partitions instances into coarse-grained chunks based on communication patterns. Within each chunk, Prism further groups instances with similar resource usage patterns to produce fine-grained functional clusters. Such a design reduces noises in the data and allows Prism to process massive instances efficiently. We evaluate Prism on two datasets collected from the real-world production environment of Huawei Cloud. Our experiments show that Prism achieves a v-measure of ~0.95, surpassing existing state-of-the-art solutions. Additionally, we illustrate the integration of Prism within monitoring systems for enhanced cloud reliability through two real-world use cases.
Modern computer systems are highly configurable, with hundreds of configuration options that interact, resulting in an enormous configuration space. As a result, optimizing performance goals (e.g., latency) in such systems is challenging due to frequent uncertainties in their environments (e.g., workload fluctuations). Recently, transfer learning has been applied to address this problem by reusing knowledge from configuration measurements from the source environments, where it is cheaper to intervene than the target environment, where any intervention is costly or impossible. Recent empirical research showed that statistical models can perform poorly when the deployment environment changes because the behavior of certain variables in the models can change dramatically from source to target. To address this issue, we propose CAMEO, a method that identifies invariant causal predictors under environmental changes, allowing the optimization process to operate in a reduced search space, leading to faster optimization of system performance. We demonstrate significant performance improvements over state-of-the-art optimization methods in MLperf deep learning systems, a video analytics pipeline, and a database system.
Outsourced computing is widely used today. However, current approaches for protecting client data in outsourced computing fall short: use of cryptographic techniques like fully-homomorphic encryption incurs substantial costs, whereas use of hardware-assisted trusted execution environments has been shown to be vulnerable to run-time and side-channel attacks. We present BliMe, an architecture to realize efficient and secure outsourced computation. BliMe consists of a novel and minimal set of instruction set architecture (ISA) extensions implementing a taint-tracking policy to ensure the confidentiality of client data even in the presence of server vulnerabilities. To secure outsourced computation, the BliMe extensions can be used together with an attestable, fixed-function hardware security module (HSM) and an encryption engine that provides atomic decrypt-and-taint and encrypt-and-untaint operations. Clients rely on remote attestation and key agreement with the HSM to ensure that their data can be transferred securely to and from the encryption engine and will always be protected by BliMe's taint-tracking policy while at the server. We provide an RTL implementation BliMe-BOOM based on the BOOM RISC-V core. BliMe-BOOM requires no reduction in clock frequency relative to unmodified BOOM, and has minimal power ($\lt1.5\%$) and FPGA resource ($\leq9.0\%$) overheads. Various implementations of BliMe incur only moderate performance overhead ($8-25\%$). We also provide a machine-checked security proof of a simplified model ISA with BliMe extensions.
In the current user-server interaction paradigm of prompted generation with large language models (LLM) on cloud, the server fully controls the generation process, which leaves zero options for users who want to keep the generated text to themselves. We propose LatticeGen, a cooperative framework in which the server still handles most of the computation while the user controls the sampling operation. The key idea is that the true generated sequence is mixed with noise tokens by the user and hidden in a noised lattice. Considering potential attacks from a hypothetically malicious server and how the user can defend against it, we propose the repeated beam-search attack and the mixing noise scheme. In our experiments we apply LatticeGen to protect both prompt and generation. It is shown that while the noised lattice degrades generation quality, LatticeGen successfully protects the true generation to a remarkable degree under strong attacks (more than 50% of the semantic remains hidden as measured by BERTScore).
Graph neural network (GNN) link prediction is increasingly deployed in citation, collaboration, and online social networks to recommend academic literature, collaborators, and friends. While prior research has investigated the dyadic fairness of GNN link prediction, the within-group fairness and ``rich get richer'' dynamics of link prediction remain underexplored. However, these aspects have significant consequences for degree and power imbalances in networks. In this paper, we shed light on how degree bias in networks affects Graph Convolutional Network (GCN) link prediction. In particular, we theoretically uncover that GCNs with a symmetric normalized graph filter have a within-group preferential attachment bias. We validate our theoretical analysis on real-world citation, collaboration, and online social networks. We further bridge GCN's preferential attachment bias with unfairness in link prediction and propose a new within-group fairness metric. This metric quantifies disparities in link prediction scores between social groups, towards combating the amplification of degree and power disparities. Finally, we propose a simple training-time strategy to alleviate within-group unfairness, and we show that it is effective on citation, online social, and credit networks.
Cloud services are omnipresent and critical cloud service failure is a fact of life. In order to retain customers and prevent revenue loss, it is important to provide high reliability guarantees for these services. One way to do this is by predicting outages in advance, which can help in reducing the severity as well as time to recovery. It is difficult to forecast critical failures due to the rarity of these events. Moreover, critical failures are ill-defined in terms of observable data. Our proposed method, Outage-Watch, defines critical service outages as deteriorations in the Quality of Service (QoS) captured by a set of metrics. Outage-Watch detects such outages in advance by using current system state to predict whether the QoS metrics will cross a threshold and initiate an extreme event. A mixture of Gaussian is used to model the distribution of the QoS metrics for flexibility and an extreme event regularizer helps in improving learning in tail of the distribution. An outage is predicted if the probability of any one of the QoS metrics crossing threshold changes significantly. Our evaluation on a real-world SaaS company dataset shows that Outage-Watch significantly outperforms traditional methods with an average AUC of 0.98. Additionally, Outage-Watch detects all the outages exhibiting a change in service metrics and reduces the Mean Time To Detection (MTTD) of outages by up to 88% when deployed in an enterprise cloud-service system, demonstrating efficacy of our proposed method.
Searching in a denied environment is challenging for swarm robots as no assistance from GNSS, mapping, data sharing, and central processing is allowed. However, using olfactory and auditory signals to cooperate like animals could be an important way to improve the collaboration of swarm robots. In this paper, an Olfactory-Auditory augmented Bug algorithm (OA-Bug) is proposed for a swarm of autonomous robots to explore a denied environment. A simulation environment is built to measure the performance of OA-Bug. The coverage of the search task can reach 96.93% using OA-Bug, which is significantly improved compared with a similar algorithm, SGBA. Furthermore, experiments are conducted on real swarm robots to prove the validity of OA-Bug. Results show that OA-Bug can improve the performance of swarm robots in a denied environment.
In distributed Complex Event Processing (CEP) applications with high load but limited resources, bottleneck operators in the operator graph can significantly slow down processing of event streams, thus compelling the need to shed load. A high-quality load shedding strategy that resolves the bottleneck with high output quality evaluates each event's importance with regards to the application's final output and drops less important events from the event stream for the benefit of important ones. So far, no solution has been proposed that is able to permit good load shedding in distributed, multi-operator CEP applications. On one hand, shedding strategies have been proposed for single-operator CEP applications that can measure an event's importance immediately at the bottleneck operator, only, and thereby ignore the effect of other streams in the application on an event's importance. On the other hand, shedding strategies have been proposed for applications with multiple operators from the area of stream processing that provide a fixed selectivity which is not given in the conditional CEP operators. We, therefore, propose a load-shedding solution for distributed CEP applications that maximizes the application's final output and ensures timely processing of important events by using a set of CEP-tailored selectivity functions and a linear program, which is an abstraction of the CEP application. Moreover, our solution ensures a quality optimal shedder configuration even in the presence of dynamically changing conditions. With the help of extensive evaluations on both synthetic and real data, we show that our solution successfully resolves overload at bottleneck operators and at the same time maximizes the quality of the application's output.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.