We propose, study, and compute solutions to a class of optimal control problems for hyperbolic systems of conservation laws and their viscous regularization. We take barotropic compressible Navier--Stokes equations (BNS) as a canonical example. We first apply the entropy--entropy flux--metric condition for BNS. We select an entropy function and rewrite BNS to a summation of flux and metric gradient of entropy. We then develop a metric variational problem for BNS, whose critical points form a primal-dual BNS system. We design a finite difference scheme for the variational system. The numerical approximations of conservation laws are implicit in time. We solve the variational problem with an algorithm inspired by the primal-dual hybrid gradient method. This includes a new method for solving implicit time approximations for conservation laws, which seems to be unconditionally stable. Several numerical examples are presented to demonstrate the effectiveness of the proposed algorithm.
Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.
Stochastic partial differential equations (SPDEs) are the mathematical tool of choice for modelling spatiotemporal PDE-dynamics under the influence of randomness. Based on the notion of mild solution of an SPDE, we introduce a novel neural architecture to learn solution operators of PDEs with (possibly stochastic) forcing from partially observed data. The proposed Neural SPDE model provides an extension to two popular classes of physics-inspired architectures. On the one hand, it extends Neural CDEs and variants -- continuous-time analogues of RNNs -- in that it is capable of processing incoming sequential information arriving irregularly in time and observed at arbitrary spatial resolutions. On the other hand, it extends Neural Operators -- generalizations of neural networks to model mappings between spaces of functions -- in that it can parameterize solution operators of SPDEs depending simultaneously on the initial condition and a realization of the driving noise. By performing operations in the spectral domain, we show how a Neural SPDE can be evaluated in two ways, either by calling an ODE solver (emulating a spectral Galerkin scheme), or by solving a fixed point problem. Experiments on various semilinear SPDEs, including the stochastic Navier-Stokes equations, demonstrate how the Neural SPDE model is capable of learning complex spatiotemporal dynamics in a resolution-invariant way, with better accuracy and lighter training data requirements compared to alternative models, and up to 3 orders of magnitude faster than traditional solvers.
This paper describes an energy-preserving and globally time-reversible code for weakly compressible smoothed particle hydrodynamics (SPH). We do not add any additional dynamics to the Monaghan's original SPH scheme at the level of ordinary differential equation, but we show how to discretize the equations by using a corrected expression for density and by invoking a symplectic integrator. Moreover, to achieve the global-in-time reversibility, we have to correct the initial state, implement a conservative fluid-wall interaction, and use the fixed-point arithmetic. Although the numerical scheme is reversible globally in time (solvable backwards in time while recovering the initial conditions), we observe thermalization of the particle velocities and growth of the Boltzmann entropy. In other words, when we do not see all the possible details, as in the Boltzmann entropy, which depends only on the one-particle distribution function, we observe the emergence of the second law of thermodynamics (irreversible behavior) from purely reversible dynamics.
In this paper we propose an accurate, and computationally efficient method for incorporating adaptive spatial resolution into weakly-compressible Smoothed Particle Hydrodynamics (SPH) schemes. Particles are adaptively split and merged in an accurate manner. Critically, the method ensures that the number of neighbors of each particle is optimal, leading to an efficient algorithm. A set of background particles is used to specify either geometry-based spatial resolution, where the resolution is a function of distance to a solid body, or solution-based adaptive resolution, where the resolution is a function of the computed solution. This allows us to simulate problems using particles having length variations of the order of 1:250 with much fewer particles than currently reported with other techniques. The method is designed to automatically adapt when any solid bodies move. The algorithms employed are fully parallel. We consider a suite of benchmark problems to demonstrate the accuracy of the approach. We then consider the classic problem of the flow past a circular cylinder at a range of Reynolds numbers and show that the proposed method produces accurate results with a significantly reduced number of particles. We provide an open source implementation and a fully reproducible manuscript.
In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.
This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.
This paper introduces a novel approach to compute the numerical fluxes at the cell boundaries for a cell-centered conservative numerical scheme. Explicit gradients used in deriving the reconstruction polynomials are replaced by high-order gradients computed by compact finite differences, referred to as implicit gradients in this paper. The new approach has superior dispersion and dissipation properties in comparison to the compact reconstruction approach. A problem-independent shock capturing approach via Boundary Variation Diminishing (BVD) algorithm is used to suppress oscillations for the simulation of flows with shocks and material interfaces. Several numerical test cases are carried out to verify the proposed method's capability using the implicit gradient method for compressible flows.
We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modelling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in space and time with inf-sup stable pairs of finite elements for the spatial approximation of the unknowns are investigated. Optimal order error estimates of energy-type are proven. Superconvergence at the time nodes is addressed briefly. The error analysis can be extended to discontinuous and enriched Galerkin space discretizations. The error estimates are confirmed by numerical experiments.
We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.
In this paper, a third order gas kinetic scheme is developed on the three dimensional hybrid unstructured meshes for the numerical simulation of compressible inviscid and viscous flows. A third-order WENO reconstruction is developed on the hybrid unstructured meshes, including tetrahedron, pyramid, prism and hexahedron. A simple strategy is adopted for the selection of big stencil and sub-stencils. Incorporate with the two-stage fourth-order temporal discretization and lower-upper symmetric Gauss-Seidel methods, both explicit and implicit high-order gas-kinetic schemes are developed. A variety of numerical examples, from the subsonic to supersonic flows, are presented to validate the accuracy and robustness for both inviscid and viscous flows.