The development of privacy-enhancing technologies has made immense progress in reducing trade-offs between privacy and performance in data exchange and analysis. Similar tools for structured transparency could be useful for AI governance by offering capabilities such as external scrutiny, auditing, and source verification. It is useful to view these different AI governance objectives as a system of information flows in order to avoid partial solutions and significant gaps in governance, as there may be significant overlap in the software stacks needed for the AI governance use cases mentioned in this text. When viewing the system as a whole, the importance of interoperability between these different AI governance solutions becomes clear. Therefore, it is imminently important to look at these problems in AI governance as a system, before these standards, auditing procedures, software, and norms settle into place.
This paper presents a comprehensive survey of ChatGPT and GPT-4, state-of-the-art large language models (LLM) from the GPT series, and their prospective applications across diverse domains. Indeed, key innovations such as large-scale pre-training that captures knowledge across the entire world wide web, instruction fine-tuning and Reinforcement Learning from Human Feedback (RLHF) have played significant roles in enhancing LLMs' adaptability and performance. We performed an in-depth analysis of 194 relevant papers on arXiv, encompassing trend analysis, word cloud representation, and distribution analysis across various application domains. The findings reveal a significant and increasing interest in ChatGPT/GPT-4 research, predominantly centered on direct natural language processing applications, while also demonstrating considerable potential in areas ranging from education and history to mathematics, medicine, and physics. This study endeavors to furnish insights into ChatGPT's capabilities, potential implications, ethical concerns, and offer direction for future advancements in this field.
Private and public sector structures and norms refine how emerging technology is used in practice. In healthcare, despite a proliferation of AI adoption, the organizational governance surrounding its use and integration is often poorly understood. What the Health AI Partnership (HAIP) aims to do in this research is to better define the requirements for adequate organizational governance of AI systems in healthcare settings and support health system leaders to make more informed decisions around AI adoption. To work towards this understanding, we first identify how the standards for the AI adoption in healthcare may be designed to be used easily and efficiently. Then, we map out the precise decision points involved in the practical institutional adoption of AI technology within specific health systems. Practically, we achieve this through a multi-organizational collaboration with leaders from major health systems across the United States and key informants from related fields. Working with the consultancy IDEO [dot] org, we were able to conduct usability-testing sessions with healthcare and AI ethics professionals. Usability analysis revealed a prototype structured around mock key decision points that align with how organizational leaders approach technology adoption. Concurrently, we conducted semi-structured interviews with 89 professionals in healthcare and other relevant fields. Using a modified grounded theory approach, we were able to identify 8 key decision points and comprehensive procedures throughout the AI adoption lifecycle. This is one of the most detailed qualitative analyses to date of the current governance structures and processes involved in AI adoption by health systems in the United States. We hope these findings can inform future efforts to build capabilities to promote the safe, effective, and responsible adoption of emerging technologies in healthcare.
The vision of Industry 4.0 introduces new requirements to Operational Technology (OT) systems. Solutions for these requirements already exist in the Information Technology (IT) world, however, due to the different characteristics of both worlds, these solutions often cannot be directly used in the world of OT. We therefore propose an Industrial Business Process Twin (IBPT), allowing to apply methods of one world to another not directly but, instead, to a representation, that is in bidirectional exchange with the other world. The proposed IBPT entity acts as an intermediary, decoupling the worlds of IT and OT, thus allowing for an integration of IT and OT components of different manufacturers and platforms. Using this approach, we demonstrate the four essential Industry 4.0 design principles information transparency, technical assistance, interconnection and decentralized decisions based on the gamified Industry 4.0 scenario of playing the game of Nine Men's Morris. This scenario serves well for agent based Artificial Intelligence (AI)-research and education. We develop an Open Platform Communications Unified Architecture (OPC UA) information and communication model and then evaluate the IBPT component with respect to the different views of the Reference Architecture Model Industry 4.0 (RAMI4.0).
Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. In principle, prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem. Why are we not widely using prior elicitation? We analyse the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology.
The widespread adoption of electronic health records and digital healthcare data has created a demand for data-driven insights to enhance patient outcomes, diagnostics, and treatments. However, using real patient data presents privacy and regulatory challenges, including compliance with HIPAA and GDPR. Synthetic data generation, using generative AI models like GANs and VAEs offers a promising solution to balance valuable data access and patient privacy protection. In this paper, we examine generative AI models for creating realistic, anonymized patient data for research and training, explore synthetic data applications in healthcare, and discuss its benefits, challenges, and future research directions. Synthetic data has the potential to revolutionize healthcare by providing anonymized patient data while preserving privacy and enabling versatile applications.
Speech technology for communication, accessing information and services has rapidly improved in quality. It is convenient and appealing because speech is the primary mode of communication for humans. Such technology however also presents proven threats to privacy. Speech is a tool for communication and it will thus inherently contain private information. Importantly, it however also contains a wealth of side information, such as information related to health, emotions, affiliations, and relationships, all of which are private. Exposing such private information can lead to serious threats such as price gouging, harassment, extortion, and stalking. This paper is a tutorial on privacy issues related to speech technology, modeling their threats, approaches for protecting users' privacy, measuring the performance of privacy-protecting methods, perception of privacy as well as societal and legal consequences. In addition to a tutorial overview, it also presents lines for further development where improvements are most urgently needed.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.