亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tabular data is one of the most commonly used types of data in machine learning. Despite recent advances in neural nets (NNs) for tabular data, there is still an active discussion on whether or not NNs generally outperform gradient-boosted decision trees (GBDTs) on tabular data, with several recent works arguing either that GBDTs consistently outperform NNs on tabular data, or vice versa. In this work, we take a step back and question the importance of this debate. To this end, we conduct the largest tabular data analysis to date, comparing 19 algorithms across 176 datasets, and we find that the 'NN vs. GBDT' debate is overemphasized: for a surprisingly high number of datasets, either the performance difference between GBDTs and NNs is negligible, or light hyperparameter tuning on a GBDT is more important than choosing between NNs and GBDTs. Next, we analyze dozens of metafeatures to determine what \emph{properties} of a dataset make NNs or GBDTs better-suited to perform well. For example, we find that GBDTs are much better than NNs at handling skewed or heavy-tailed feature distributions and other forms of dataset irregularities. Our insights act as a guide for practitioners to determine which techniques may work best on their dataset. Finally, with the goal of accelerating tabular data research, we release the TabZilla Benchmark Suite: a collection of the 36 'hardest' of the datasets we study. Our benchmark suite, codebase, and all raw results are available at //github.com/naszilla/tabzilla.

相關內容

We focus on the continual learning problem where the tasks arrive sequentially and the aim is to perform well on the newly arrived task without performance degradation on the previously seen tasks. In contrast to the continual learning literature focusing on the centralized setting, we investigate the distributed estimation framework. We consider the well-established distributed learning algorithm COCOA. We derive closed form expressions for the iterations for the overparametrized case. We illustrate the convergence and the error performance of the algorithm based on the over/under-parameterization of the problem. Our results show that depending on the problem dimensions and data generation assumptions, COCOA can perform continual learning over a sequence of tasks, i.e., it can learn a new task without forgetting previously learned tasks, with access only to one task at a time.

The index of success of the researchers is now mostly measured using the Hirsch index ($h$). Our recent precise demonstration, that statistically $h \sim \sqrt {N_c} \sim \sqrt {N_p}$, where $N_p$ and $N_c$ denote respectively the total number of publications and total citations for the researcher, suggests that average number of citations per paper ($N_c/N_p$), and hence $h$, are statistical numbers (Dunbar numbers) depending on the community or network to which the researcher belongs. We show here, extending our earlier observations, that the indications of success are not reflected by the total citations $N_c$, rather by the inequalities among citations from publications to publications. Specifically, we show that for very successful authors, the yearly variations in the Gini index ($g$, giving the average inequality of citations for the publications) and the Kolkata index ($k$, giving the fraction of total citations received by the top $1 - k$ fraction of publications; $k = 0.80$ corresponds to Pareto's 80/20 law) approach each other to $g = k \simeq 0.82$, signaling a precursor for the arrival of (or departure from) the Self-Organized Critical (SOC) state of his/her publication statistics. Analyzing the citation statistics (from Google Scholar) of thirty successful scientists throughout their recorded publication history, we find that the $g$ and $k$ for very successful among them (mostly Nobel Laureates, highest rank Stanford Cite-Scorers, and a few others) reach and hover just above (and then) below that $g = k \simeq 0.82$ mark, while for others they remain below that mark. We also find that all the lower (than the SOC mark 0.82) values of $k$ and $g$ fit a linear relationship $k = 1/2 + cg$, with $c = 0.39$.

Recent advancements in large language models, such as ChatGPT, have demonstrated significant potential to impact various aspects of human life. However, ChatGPT still faces challenges in providing reliable and accurate answers to user questions. To better understand the model's particular weaknesses in providing truthful answers, we embark an in-depth exploration of open-domain question answering. Specifically, we undertake a detailed examination of ChatGPT's failures, categorized into: comprehension, factuality, specificity, and inference. We further pinpoint factuality as the most contributing failure and identify two critical abilities associated with factuality: knowledge memorization and knowledge recall. Through experiments focusing on factuality, we propose several potential enhancement strategies. Our findings suggest that augmenting the model with granular external knowledge and cues for knowledge recall can enhance the model's factuality in answering questions.

Fluency is a crucial goal of all Natural Language Generation (NLG) systems. Widely used automatic evaluation metrics fall short in capturing the fluency of machine-generated text. Assessing the fluency of NLG systems poses a challenge since these models are not limited to simply reusing words from the input but may also generate abstractions. Existing reference-based fluency evaluations, such as word overlap measures, often exhibit weak correlations with human judgments. This paper adapts an existing unsupervised technique for measuring text fluency without the need for any reference. Our approach leverages various word embeddings and trains language models using Recurrent Neural Network (RNN) architectures. We also experiment with other available multilingual Language Models (LMs). To assess the performance of the models, we conduct a comparative analysis across 10 Indic languages, correlating the obtained fluency scores with human judgments. Our code and human-annotated benchmark test-set for fluency is available at //github.com/AnanyaCoder/TextFluencyForIndicLanaguges.

Recently, a series of studies have tried to extract interactions between input variables modeled by a DNN and define such interactions as concepts encoded by the DNN. However, strictly speaking, there still lacks a solid guarantee whether such interactions indeed represent meaningful concepts. Therefore, in this paper, we examine the trustworthiness of interaction concepts from four perspectives. Extensive empirical studies have verified that a well-trained DNN usually encodes sparse, transferable, and discriminative concepts, which is partially aligned with human intuition.

Programming language understanding and representation (a.k.a code representation learning) has always been a hot and challenging task in software engineering. It aims to apply deep learning techniques to produce numerical representations of the source code features while preserving its semantics. These representations can be used for facilitating subsequent code-related tasks. The abstract syntax tree (AST), a fundamental code feature, illustrates the syntactic information of the source code and has been widely used in code representation learning. However, there is still a lack of systematic and quantitative evaluation of how well AST-based code representation facilitates subsequent code-related tasks. In this paper, we first conduct a comprehensive empirical study to explore the effectiveness of the AST-based code representation in facilitating follow-up code-related tasks. To do so, we compare the performance of models trained with code token sequence (Token for short) based code representation and AST-based code representation on three popular types of code-related tasks. Surprisingly, the overall quantitative statistical results demonstrate that models trained with AST-based code representation consistently perform worse across all three tasks compared to models trained with Token-based code representation. Our further quantitative analysis reveals that models trained with AST-based code representation outperform models trained with Token-based code representation in certain subsets of samples across all three tasks. We also conduct comprehensive experiments to evaluate and reveal the impact of the choice of AST parsing/preprocessing/encoding methods on AST-based code representation and subsequent code-related tasks. Our study provides future researchers with detailed guidance on how to select solutions at each stage to fully exploit AST.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司