亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributed computing often gives rise to complex concurrent and interacting activities. In some cases several concurrent activities may be working together, i.e. cooperating, to solve a given problem; in other cases, the activities may be independent but needing to share common system resources for which they must compete. Many difficulties and limitations occur in the widely advocated objects and (trans)actions model when it is supposed to support cooperating activities. We have introduced previously the concept of coordinated atomic (CA) actions [Xu et al. 1995]; this paper analyzes and examines the derived objects and CA actions model for constructing fault-tolerant distributed systems and providing unified support for both cooperative and competitive concurrency. Our investigation reveals and clarifies several significant problems that have not previously been studied extensively, including the problem of ensuring consistent access to shared objects from a joint action as opposed to a set of independent actions. Conceptual and implementation-related solutions are proposed and illustrated.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際(ji)會議。 Publisher:ACM。 SIT:

The increasing complexity of modern interlocking poses a major challenge to ensuring railway safety. This calls for application of formal methods forassurance and verification of their safety. We have developed an industry-strength toolset, called SafeCap, for formal verification of interlockings. Our aim was to overcome the main barriers in deploying formal methods in industry. The approach proposed verifies interlocking data developed by signalling engineers in the ways they are designed by industry. It ensures fully-automated verification of safety properties using the state of the art techniques (automated theorem provers and solvers), and provides diagnostics in terms of the notations used by engineers. In the last two years SafeCap has been successfully used to verify 26 real-world mainline interlockings, developed by different suppliers and design offices. SafeCap is currently used in an advisory capacity, supplementing manual checking and testing processes by providing an additional level of verification and enabling earlier identification of errors. We are now developing a safety case to support its use as an alternative to some of these activities.

Efficient contact tracing and isolation is an effective strategy to control epidemics. It was used effectively during the Ebola epidemic and successfully implemented in several parts of the world during the ongoing COVID-19 pandemic. An important consideration in contact tracing is the budget on the number of individuals asked to quarantine -- the budget is limited for socioeconomic reasons. In this paper, we present a Markov Decision Process (MDP) framework to formulate the problem of using contact tracing to reduce the size of an outbreak while asking a limited number of people to quarantine. We formulate each step of the MDP as a combinatorial problem, MinExposed, which we demonstrate is NP-Hard; as a result, we develop an LP-based approximation algorithm. Though this algorithm directly solves MinExposed, it is often impractical in the real world due to information constraints. To this end, we develop a greedy approach based on insights from the analysis of the previous algorithm, which we show is more interpretable. A key feature of the greedy algorithm is that it does not need complete information of the underlying social contact network. This makes the heuristic implementable in practice and is an important consideration. Finally, we carry out experiments on simulations of the MDP run on real-world networks, and show how the algorithms can help in bending the epidemic curve while limiting the number of isolated individuals. Our experimental results demonstrate that the greedy algorithm and its variants are especially effective, robust, and practical in a variety of realistic scenarios, such as when the contact graph and specific transmission probabilities are not known. All code can be found in our GitHub repository: //github.com/gzli929/ContactTracing.

The goal of this paper is to investigate a control theoretic analysis of linear stochastic iterative algorithm and temporal difference (TD) learning. TD-learning is a linear stochastic iterative algorithm to estimate the value function of a given policy for a Markov decision process, which is one of the most popular and fundamental reinforcement learning algorithms. While there has been a series of successful works in theoretical analysis of TD-learning, it was not until recently that researchers found some guarantees on its statistical efficiency. In this paper, we propose a control theoretic finite-time analysis TD-learning, which exploits standard notions in linear system control communities. Therefore, the proposed work provides additional insights on TD-learning and reinforcement learning with simple concepts and analysis tools in control theory.

Augmented reality technology is one of the leading technologies in the context of Industry 4.0. The promising potential application of augmented reality in industrial production systems has received much attention, which led to the concept of industrial augmented reality. On the one hand, this technology provides a suitable platform that facilitates the registration of information and access to them to help make decisions and allows concurrent training for the user while executing the production processes. This leads to increased work speed and accuracy of the user as a process operator and consequently offers economic benefits to the companies. Moreover, recent advances in the internet of things, smart sensors, and advanced algorithms have increased the possibility of widespread and more effective use of augmented reality. Currently, many research pieces are being done to expand the application of augmented reality and increase its effectiveness in industrial production processes. This research demonstrates the influence of augmented reality in Industry 4.0 while critically reviewing the industrial augmented reality history. Afterward, the paper discusses the critical role of industrial augmented reality by analyzing some use cases and their prospects. With a systematic analysis, this paper discusses the main future directions for industrial augmented reality applications in industry 4.0. The article investigates various areas of application for this technology and its impact on improving production conditions. Finally, the challenges that this technology faces and its research opportunities are discussed.

Feature attribution is often loosely presented as the process of selecting a subset of relevant features as a rationale of a prediction. This lack of clarity stems from the fact that we usually do not have access to any notion of ground-truth attribution and from a more general debate on what good interpretations are. In this paper we propose to formalise feature selection/attribution based on the concept of relaxed functional dependence. In particular, we extend our notions to the instance-wise setting and derive necessary properties for candidate selection solutions, while leaving room for task-dependence. By computing ground-truth attributions on synthetic datasets, we evaluate many state-of-the-art attribution methods and show that, even when optimised, some fail to verify the proposed properties and provide wrong solutions.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

Reinforcement learning (RL) algorithms have been around for decades and been employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that demand multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems.

Recommender systems are one of the most successful applications of data mining and machine learning technology in practice. Academic research in the field is historically often based on the matrix completion problem formulation, where for each user-item-pair only one interaction (e.g., a rating) is considered. In many application domains, however, multiple user-item interactions of different types can be recorded over time. And, a number of recent works have shown that this information can be used to build richer individual user models and to discover additional behavioral patterns that can be leveraged in the recommendation process. In this work we review existing works that consider information from such sequentially-ordered user- item interaction logs in the recommendation process. Based on this review, we propose a categorization of the corresponding recommendation tasks and goals, summarize existing algorithmic solutions, discuss methodological approaches when benchmarking what we call sequence-aware recommender systems, and outline open challenges in the area.

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司