In materials science and many other application domains, 3D information can often only be extrapolated by taking 2D slices. In topological data analysis, persistence vineyards have emerged as a powerful tool to take into account topological features stretching over several slices. In the present paper, we illustrate how persistence vineyards can be used to design rigorous statistical hypothesis tests for 3D microstructure models based on data from 2D slices. More precisely, by establishing the asymptotic normality of suitable longitudinal and cross-sectional summary statistics, we devise goodness-of-fit tests that become asymptotically exact in large sampling windows. We illustrate the testing methodology through a detailed simulation study and provide a prototypical example from materials science.
Implementation of many statistical methods for large, multivariate data sets requires one to solve a linear system that, depending on the method, is of the dimension of the number of observations or each individual data vector. This is often the limiting factor in scaling the method with data size and complexity. In this paper we illustrate the use of Krylov subspace methods to address this issue in a statistical solution to a source separation problem in cosmology where the data size is prohibitively large for direct solution of the required system. Two distinct approaches are described: one that uses the method of conjugate gradients directly to the Kronecker-structured problem and another that reformulates the system as a Sylvester matrix equation. We show that both approaches produce an accurate solution within an acceptable computation time and with practical memory requirements for the data size that is currently available.
Given its status as a classic problem and its importance to both theoreticians and practitioners, edit distance provides an excellent lens through which to understand how the theoretical analysis of algorithms impacts practical implementations. From an applied perspective, the goals of theoretical analysis are to predict the empirical performance of an algorithm and to serve as a yardstick to design novel algorithms that perform well in practice. In this paper, we systematically survey the types of theoretical analysis techniques that have been applied to edit distance and evaluate the extent to which each one has achieved these two goals. These techniques include traditional worst-case analysis, worst-case analysis parametrized by edit distance or entropy or compressibility, average-case analysis, semi-random models, and advice-based models. We find that the track record is mixed. On one hand, two algorithms widely used in practice have been born out of theoretical analysis and their empirical performance is captured well by theoretical predictions. On the other hand, all the algorithms developed using theoretical analysis as a yardstick since then have not had any practical relevance. We conclude by discussing the remaining open problems and how they can be tackled.
The superposition of data sets with internal parametric self-similarity is a longstanding and widespread technique for the analysis of many types of experimental data across the physical sciences. Typically, this superposition is performed manually, or recently by one of a few automated algorithms. However, these methods are often heuristic in nature, are prone to user bias via manual data shifting or parameterization, and lack a native framework for handling uncertainty in both the data and the resulting model of the superposed data. In this work, we develop a data-driven, non-parametric method for superposing experimental data with arbitrary coordinate transformations, which employs Gaussian process regression to learn statistical models that describe the data, and then uses maximum a posteriori estimation to optimally superpose the data sets. This statistical framework is robust to experimental noise, and automatically produces uncertainty estimates for the learned coordinate transformations. Moreover, it is distinguished from black-box machine learning in its interpretability -- specifically, it produces a model that may itself be interrogated to gain insight into the system under study. We demonstrate these salient features of our method through its application to four representative data sets characterizing the mechanics of soft materials. In every case, our method replicates results obtained using other approaches, but with reduced bias and the addition of uncertainty estimates. This method enables a standardized, statistical treatment of self-similar data across many fields, producing interpretable data-driven models that may inform applications such as materials classification, design, and discovery.
The development of high-dimensional white noise test is important in both statistical theories and applications, where the dimension of the time series can be comparable to or exceed the length of the time series. This paper proposes several distribution-free tests using the rank based statistics for testing the high-dimensional white noise, which are robust to the heavy tails and do not quire the finite-order moment assumptions for the sample distributions. Three families of rank based tests are analyzed in this paper, including the simple linear rank statistics, non-degenerate U-statistics and degenerate U-statistics. The asymptotic null distributions and rate optimality are established for each family of these tests. Among these tests, the test based on degenerate U-statistics can also detect the non-linear and non-monotone relationships in the autocorrelations. Moreover, this is the first result on the asymptotic distributions of rank correlation statistics which allowing for the cross-sectional dependence in high dimensional data.
In this study, we examine a clustering problem in which the covariates of each individual element in a dataset are associated with an uncertainty specific to that element. More specifically, we consider a clustering approach in which a pre-processing applying a non-linear transformation to the covariates is used to capture the hidden data structure. To this end, we approximate the sets representing the propagated uncertainty for the pre-processed features empirically. To exploit the empirical uncertainty sets, we propose a greedy and optimistic clustering (GOC) algorithm that finds better feature candidates over such sets, yielding more condensed clusters. As an important application, we apply the GOC algorithm to synthetic datasets of the orbital properties of stars generated through our numerical simulation mimicking the formation process of the Milky Way. The GOC algorithm demonstrates an improved performance in finding sibling stars originating from the same dwarf galaxy. These realistic datasets have also been made publicly available.
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems, which we call dynamical dimension reduction (DDR). In the DDR model, each point is evolved via a nonlinear flow towards a lower-dimensional subspace; the projection onto the subspace gives the low-dimensional embedding. Training the model involves identifying the nonlinear flow and the subspace. Following the equation discovery method, we represent the vector field that defines the flow using a linear combination of dictionary elements, where each element is a pre-specified linear/nonlinear candidate function. A regularization term for the average total kinetic energy is also introduced and motivated by optimal transport theory. We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method. We also show how the DDR method can be trained using a gradient-based optimization method, where the gradients are computed using the adjoint method from optimal control theory. The DDR method is implemented and compared on synthetic and example datasets to other dimension reductions methods, including PCA, t-SNE, and Umap.
Implementation of many statistical methods for large, multivariate data sets requires one to solve a linear system that, depending on the method, is of the dimension of the number of observations or each individual data vector. This is often the limiting factor in scaling the method with data size and complexity. In this paper we illustrate the use of Krylov subspace methods to address this issue in a statistical solution to a source separation problem in cosmology where the data size is prohibitively large for direct solution of the required system. Two distinct approaches are described: one that uses the method of conjugate gradients directly to the Kronecker-structured problem and another that reformulates the system as a Sylvester matrix equation. We show that both approaches produce an accurate solution within an acceptable computation time and with practical memory requirements for the data size that is currently available.
Bayesian model selection provides a powerful framework for objectively comparing models directly from observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (model evidence), which is computationally challenging, prohibiting its use in many high-dimensional Bayesian inverse problems. With Bayesian imaging applications in mind, in this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models for applications that use images to inform decisions under uncertainty. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving l_1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices of dictionary and measurement model.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.