A variety of computing platform like Field Programmable Gate Array (FPGA), Graphics Processing Unit (GPU) and multicore Central Processing Unit (CPU) in data centers are suitable for acceleration of data-intensive workloads. Especially, FPGA platforms in data centers are gaining popularity for high-performance computations due to their high speed, reconfigurable nature and cost effectiveness. Such heterogeneous, highly parallel computational architectures in data centers, combined with high-speed communication technologies like 5G, are becoming increasingly suitable for real-time applications. However, flexibility, cost-effectiveness, high computational capabilities, and energy efficiency remain challenging issues in FPGA based data centers. In this context an energy efficient scheduling solution is required to maximize the resource profitability of FPGA. This paper introduces a power-aware scheduling methodology aimed at accommodating periodic hardware tasks within the available FPGAs of a data center at their potentially maximum speed. This proposed methodology guarantees the execution of these tasks us ing the maximum number of parallel computation units possible to implement in the FPGAs, with minimum power consumption. The proposed scheduling methodology is implemented in a data center with multiple Alveo-50 Xilinx-AMD FPGAs and Vitis 2023 tool. The evidence from the implementation shows the proposed scheduling methodology is efficient compared to existing solutions.
We present first results from the use of XGBoost, a highly effective machine learning (ML) method, within the Bristol Betting Exchange (BBE), an open-source agent-based model (ABM) designed to simulate a contemporary sports-betting exchange with in-play betting during track-racing events such as horse races. We use the BBE ABM and its array of minimally-simple bettor-agents as a synthetic data generator which feeds into our XGBoost ML system, with the intention that XGBoost discovers profitable dynamic betting strategies by learning from the more profitable bets made by the BBE bettor-agents. After this XGBoost training, which results in one or more decision trees, a bettor-agent with a betting strategy determined by the XGBoost-learned decision tree(s) is added to the BBE ABM and made to bet on a sequence of races under various conditions and betting-market scenarios, with profitability serving as the primary metric of comparison and evaluation. Our initial findings presented here show that XGBoost trained in this way can indeed learn profitable betting strategies, and can generalise to learn strategies that outperform each of the set of strategies used for creation of the training data. To foster further research and enhancements, the complete version of our extended BBE, including the XGBoost integration, has been made freely available as an open-source release on GitHub.
The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.
Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI (Michelson Doppler Imager onboard Solar and Heliospheric Observatory) Active Region Patches (SMARP) and Space-Weather HMI (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory) Active Region Patches (SHARP), which are two currently available data products containing magnetic field characteristics of solar active regions. The present work is an effort to combine them into one data product, and perform some initial statistical analyses in order to further expand their application in space weather forecasting. The combined data are derived by filtering, rescaling, and merging the SMARP with SHARP parameters, which can then be spatially reduced to create uniform multivariate time series. The resulting combined MDI-HMI dataset currently spans the period between April 4, 1996, and December 13, 2022, and may be extended to a more recent date. This provides an opportunity to correlate and compare it with other space weather time series, such as the daily solar flare index or the statistical properties of the soft X-ray flux measured by the Geostationary Operational Environmental Satellites (GOES). Time-lagged cross-correlation indicates that a relationship may exist, where some magnetic field properties of active regions lead the flare index in time. Applying the rolling window technique makes it possible to see how this leader-follower dynamic varies with time. Preliminary results indicate that areas of high correlation generally correspond to increased flare activity during the peak solar cycle.
We present a new Subset Simulation approach using Hamiltonian neural network-based Monte Carlo sampling for reliability analysis. The proposed strategy combines the superior sampling of the Hamiltonian Monte Carlo method with computationally efficient gradient evaluations using Hamiltonian neural networks. This combination is especially advantageous because the neural network architecture conserves the Hamiltonian, which defines the acceptance criteria of the Hamiltonian Monte Carlo sampler. Hence, this strategy achieves high acceptance rates at low computational cost. Our approach estimates small failure probabilities using Subset Simulations. However, in low-probability sample regions, the gradient evaluation is particularly challenging. The remarkable accuracy of the proposed strategy is demonstrated on different reliability problems, and its efficiency is compared to the traditional Hamiltonian Monte Carlo method. We note that this approach can reach its limitations for gradient estimations in low-probability regions of complex and high-dimensional distributions. Thus, we propose techniques to improve gradient prediction in these particular situations and enable accurate estimations of the probability of failure. The highlight of this study is the reliability analysis of a system whose parameter distributions must be inferred with Bayesian inference problems. In such a case, the Hamiltonian Monte Carlo method requires a full model evaluation for each gradient evaluation and, therefore, comes at a very high cost. However, using Hamiltonian neural networks in this framework replaces the expensive model evaluation, resulting in tremendous improvements in computational efficiency.
Backpropagation (BP) is widely used for calculating gradients in deep neural networks (DNNs). Applied often along with stochastic gradient descent (SGD) or its variants, BP is considered as a de-facto choice in a variety of machine learning tasks including DNN training and adversarial attack/defense. Recently, a linear variant of BP named LinBP was introduced for generating more transferable adversarial examples for performing black-box attacks, by Guo et al. Although it has been shown empirically effective in black-box attacks, theoretical studies and convergence analyses of such a method is lacking. This paper serves as a complement and somewhat an extension to Guo et al.'s paper, by providing theoretical analyses on LinBP in neural-network-involved learning tasks, including adversarial attack and model training. We demonstrate that, somewhat surprisingly, LinBP can lead to faster convergence in these tasks in the same hyper-parameter settings, compared to BP. We confirm our theoretical results with extensive experiments.
To handle the complexities of irregular and incomplete time series data, we propose an invertible solution of Neural Differential Equations (NDE)-based method. While NDE-based methods are a powerful method for analyzing irregularly-sampled time series, they typically do not guarantee reversible transformations in their standard form. Our method suggests the variation of Neural Controlled Differential Equations (Neural CDEs) with Neural Flow, which ensures invertibility while maintaining a lower computational burden. Additionally, it enables the training of a dual latent space, enhancing the modeling of dynamic temporal dynamics. Our research presents an advanced framework that excels in both classification and interpolation tasks. At the core of our approach is an enhanced dual latent states architecture, carefully designed for high precision across various time series tasks. Empirical analysis demonstrates that our method significantly outperforms existing models. This work significantly advances irregular time series analysis, introducing innovative techniques and offering a versatile tool for diverse practical applications.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.