亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a theory of evolutionary spectra for heteroskedasticity and autocorrelation robust (HAR) inference when the data may not satisfy second-order stationarity. Nonstationarity is a common feature of economic time series which may arise either from parameter variation or model misspecification. In such a context, the theories that support HAR inference are either not applicable or do not provide accurate approximations. HAR tests standardized by existing long-run variance estimators then may display size distortions and little or no power. This issue can be more severe for methods that use long bandwidths (i.e., fixed-b HAR tests). We introduce a class of nonstationary processes that have a time-varying spectral representation which evolves continuously except at a finite number of time points. We present an extension of the classical heteroskedasticity and autocorrelation consistent (HAC) estimators that applies two smoothing procedures. One is over the lagged autocovariances, akin to classical HAC estimators, and the other is over time. The latter element is important to flexibly account for nonstationarity. We name them double kernel HAC (DK-HAC) estimators. We show the consistency of the estimators and obtain an optimal DK-HAC estimator under the mean squared error (MSE) criterion. Overall, HAR tests standardized by the proposed DK-HAC estimators are competitive with fixed-b HAR tests, when the latter work well, with regards to size control even when there is strong dependence. Notably, in those empirically relevant situations in which previous HAR tests are undersized and have little or no power, the DK-HAC estimator leads to tests that have good size and power.

相關內容

Dense linear layers are the dominant computational bottleneck in large neural networks, presenting a critical need for more efficient alternatives. Previous efforts focused on a small number of hand-crafted structured matrices and neglected to investigate whether these structures can surpass dense layers in terms of compute-optimal scaling laws when both the model size and training examples are optimally allocated. In this work, we present a unifying framework that enables searching among all linear operators expressible via an Einstein summation. This framework encompasses many previously proposed structures, such as low-rank, Kronecker, Tensor-Train, Block Tensor-Train (BTT), and Monarch, along with many novel structures. To analyze the framework, we develop a taxonomy of all such operators based on their computational and algebraic properties and show that differences in the compute-optimal scaling laws are mostly governed by a small number of variables that we introduce. Namely, a small $\omega$ (which measures parameter sharing) and large $\psi$ (which measures the rank) reliably led to better scaling laws. Guided by the insight that full-rank structures that maximize parameters per unit of compute perform the best, we propose BTT-MoE, a novel Mixture-of-Experts (MoE) architecture obtained by sparsifying computation in the BTT structure. In contrast to the standard sparse MoE for each entire feed-forward network, BTT-MoE learns an MoE in every single linear layer of the model, including the projection matrices in the attention blocks. We find BTT-MoE provides a substantial compute-efficiency gain over dense layers and standard MoE.

While in classical cryptography, one-way functions (OWFs) are widely regarded as the "minimal assumption," the situation in quantum cryptography is less clear. Recent works have put forward two concurrent candidates for the minimal assumption in quantum cryptography: One-way state generators (OWSGs), postulating the existence of a hard search problem with an efficient verification algorithm, and EFI pairs, postulating the existence of a hard distinguishing problem. Two recent papers [Khurana and Tomer STOC'24; Batra and Jain FOCS'24] showed that OWSGs imply EFI pairs, but the reverse direction remained open. In this work, we give strong evidence that the opposite direction does not hold: We show that there is a quantum unitary oracle relative to which EFI pairs exist, but OWSGs do not. In fact, we show a slightly stronger statement that holds also for EFI pairs that output classical bits (QEFID). As a consequence, we separate, via our oracle, QEFID, and one-way puzzles from OWSGs and several other Microcrypt primitives, including efficiently verifiable one-way puzzles and unclonable state generators. In particular, this solves a problem left open in [Chung, Goldin, and Gray Crypto'24]. Using similar techniques, we also establish a fully black-box separation (which is slightly weaker than an oracle separation) between private-key quantum money schemes and QEFID pairs. One conceptual implication of our work is that the existence of an efficient verification algorithm may lead to qualitatively stronger primitives in quantum cryptography.

In this paper, we extend the work of Liesen et al. (2002), which analyzes how the condition number of an orthonormal matrix Q changes when a column is added ([Q, c]), particularly focusing on the perpendicularity of c to the span of Q. Their result, presented in Theorem 2.3 of Liesen et al. (2002), assumes exact arithmetic and orthonormality of Q, which is a strong assumption when applying these results to numerical methods such as QR factorization algorithms. In our work, we address this gap by deriving bounds on the condition number increase for a matrix B without assuming perfect orthonormality, even when a column is not perfectly orthogonal to the span of B. This framework allows us to analyze QR factorization methods where orthogonalization is imperfect and subject to Gaussian noise. We also provide results on the performance of orthogonal projection and least squares under Gaussian noise, further supporting the development of this theory.

Classifier-free guidance (CFG) is crucial for improving both generation quality and alignment between the input condition and final output in diffusion models. While a high guidance scale is generally required to enhance these aspects, it also causes oversaturation and unrealistic artifacts. In this paper, we revisit the CFG update rule and introduce modifications to address this issue. We first decompose the update term in CFG into parallel and orthogonal components with respect to the conditional model prediction and observe that the parallel component primarily causes oversaturation, while the orthogonal component enhances image quality. Accordingly, we propose down-weighting the parallel component to achieve high-quality generations without oversaturation. Additionally, we draw a connection between CFG and gradient ascent and introduce a new rescaling and momentum method for the CFG update rule based on this insight. Our approach, termed adaptive projected guidance (APG), retains the quality-boosting advantages of CFG while enabling the use of higher guidance scales without oversaturation. APG is easy to implement and introduces practically no additional computational overhead to the sampling process. Through extensive experiments, we demonstrate that APG is compatible with various conditional diffusion models and samplers, leading to improved FID, recall, and saturation scores while maintaining precision comparable to CFG, making our method a superior plug-and-play alternative to standard classifier-free guidance.

Neural Ordinary Differential Equations (NODEs) often struggle to adapt to new dynamic behaviors caused by parameter changes in the underlying system, even when these dynamics are similar to previously observed behaviors. This problem becomes more challenging when the changing parameters are unobserved, meaning their value or influence cannot be directly measured when collecting data. To address this issue, we introduce Neural Context Flow (NCF), a robust and interpretable Meta-Learning framework that includes uncertainty estimation. NCF uses higher-order Taylor expansion to enable contextual self-modulation, allowing context vectors to influence dynamics from other domains while also modulating themselves. After establishing convergence guarantees, we empirically test NCF and compare it to related adaptation methods. Our results show that NCF achieves state-of-the-art Out-of-Distribution performance on 5 out of 6 linear and non-linear benchmark problems. Through extensive experiments, we explore the flexible model architecture of NCF and the encoded representations within the learned context vectors. Our findings highlight the potential implications of NCF for foundational models in the physical sciences, offering a promising approach to improving the adaptability and generalization of NODEs in various scientific applications. Our code is openly available at \url{//github.com/ddrous/ncflow}.

We propose a theory for matrix completion that goes beyond the low-rank structure commonly considered in the literature and applies to general matrices of low description complexity. Specifically, complexity of the sets of matrices encompassed by the theory is measured in terms of Hausdorff and upper Minkowski dimensions. Our goal is the characterization of the number of linear measurements, with an emphasis on rank-$1$ measurements, needed for the existence of an algorithm that yields reconstruction, either perfect, with probability 1, or with arbitrarily small probability of error, depending on the setup. Concretely, we show that matrices taken from a set $\mathcal{U}$ such that $\mathcal{U}-\mathcal{U}$ has Hausdorff dimension $s$ can be recovered from $k>s$ measurements, and random matrices supported on a set $\mathcal{U}$ of Hausdorff dimension $s$ can be recovered with probability 1 from $k>s$ measurements. What is more, we establish the existence of recovery mappings that are robust against additive perturbations or noise in the measurements. Concretely, we show that there are $\beta$-H\"older continuous mappings recovering matrices taken from a set of upper Minkowski dimension $s$ from $k>2s/(1-\beta)$ measurements and, with arbitrarily small probability of error, random matrices supported on a set of upper Minkowski dimension $s$ from $k>s/(1-\beta)$ measurements. The numerous concrete examples we consider include low-rank matrices, sparse matrices, QR decompositions with sparse R-components, and matrices of fractal nature.

We present large-eddy-simulation (LES) modeling approaches for the simulation of atmospheric boundary layer turbulence that are of direct relevance to wind energy production. In this paper, we study a GABLS benchmark problem using high-order spectral element code Nek5000/RS and a block-structured second-order finite-volume code AMR-Wind which are supported under the DOE's Exascale Computing Project (ECP) Center for Efficient Exascale Discretizations (CEED) and ExaWind projects, respectively, targeting application simulations on various acceleration-device based exascale computing platforms. As for Nek5000/RS we demonstrate our newly developed subgrid-scale (SGS) models based on mean-field eddy viscosity (MFEV), high-pass filter (HPF), and Smagorinsky (SMG) with traction boundary conditions. For the traction boundary conditions, a novel analytical approach is presented that solves for the surface friction velocity and surface kinematic temperature flux. For AMR-Wind, standard SMG is used and discussed in detail the traction boundary conditions for convergence. We provide low-order statistics, convergence and turbulent structure analysis. Verification and convergence studies were performed for both codes at various resolutions and it was found that Nek5000/RS demonstrate convergence with resolution for all ABL bulk parameters, including boundary layer and low level jet (LLJ) height. Extensive comparisons are presented with simulation data from the literature.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司