Trust management systems often use registries to authenticate data, or form trust decisions. Examples are revocation registries and trust status lists. By introducing distributed ledgers (DLs), it is also possible to create decentralized registries. A verifier then queries a node of the respective ledger, e.g., to retrieve trust status information during the verification of a credential. While this ensures trustworthy information, the process requires the verifier to be online and the ledger node available. Additionally, the connection from the verifier to the registry poses a privacy issue, as it leaks information about the user's behavior. In this paper, we resolve these issues by extending existing ledger APIs to support results that are trustworthy even in an offline setting. We do this by introducing attestations of the ledger's state, issued by ledger nodes, aggregatable into a collective attestation by all nodes. This attestation enables a user to prove the provenance of DL-based data to an offline verifier. Our approach is generic. So once deployed it serves as a basis for any use case with an offline verifier. We also provide an implementation for the Ethereum stack and evaluate it, demonstrating the practicability of our approach.
Emergency shelters, which reflect the city's ability to respond to and deal with major public emergencies to a certain extent, are essential to a modern urban emergency management system. This paper is based on spatial analysis methods, using Analytic Hierarchy Process to analyze the suitability of the 28 emergency shelters in Wuhan City. The Technique for Order Preference by Similarity to an Ideal Solution is further used to evaluate the accommodation capacity of emergency shelters in central urban areas, which provides a reference for the optimization of existing shelters and the site selection of new shelters, and provides a basis for improving the service capacity of shelters. The results show that the overall situation of emergency shelters in Wuhan is good, with 96\% of the places reaching the medium level or above, but the suitability level needs to be further improved, especially the effectiveness and accessibility. Among the seven central urban areas in Wuhan, Hongshan District has the strongest accommodation capacity while Jianghan District has the weakest, with noticeable differences.
Iterative linear quadratic regulator (iLQR) has gained wide popularity in addressing trajectory optimization problems with nonlinear system models. However, as a model-based shooting method, it relies heavily on an accurate system model to update the optimal control actions and the trajectory determined with forward integration, thus becoming vulnerable to inevitable model inaccuracies. Recently, substantial research efforts in learning-based methods for optimal control problems have been progressing significantly in addressing unknown system models, particularly when the system has complex interactions with the environment. Yet a deep neural network is normally required to fit substantial scale of sampling data. In this work, we present Neural-iLQR, a learning-aided shooting method over the unconstrained control space, in which a neural network with a simple structure is used to represent the local system model. In this framework, the trajectory optimization task is achieved with simultaneous refinement of the optimal policy and the neural network iteratively, without relying on the prior knowledge of the system model. Through comprehensive evaluations on two illustrative control tasks, the proposed method is shown to outperform the conventional iLQR significantly in the presence of inaccuracies in system models.
Federated learning (FL) is one of the most appealing alternatives to the standard centralized learning paradigm, allowing heterogeneous set of devices to train a machine learning model without sharing their raw data. However, FL requires a central server to coordinate the learning process, thus introducing potential scalability and security issues. In the literature, server-less FL approaches like gossip federated learning (GFL) and blockchain-enabled federated learning (BFL) have been proposed to mitigate these issues. In this work, we propose a complete overview of these three techniques proposing a comparison according to an integral set of performance indicators, including model accuracy, time complexity, communication overhead, convergence time and energy consumption. An extensive simulation campaign permits to draw a quantitative analysis. In particular, GFL is able to save the 18% of training time, the 68% of energy and the 51% of data to be shared with respect to the CFL solution, but it is not able to reach the level of accuracy of CFL. On the other hand, BFL represents a viable solution for implementing decentralized learning with a higher level of security, at the cost of an extra energy usage and data sharing. Finally, we identify open issues on the two decentralized federated learning implementations and provide insights on potential extensions and possible research directions on this new research field.
Clustering is an important exploratory data analysis technique to group objects based on their similarity. The widely used $K$-means clustering method relies on some notion of distance to partition data into a fewer number of groups. In the Euclidean space, centroid-based and distance-based formulations of the $K$-means are equivalent. In modern machine learning applications, data often arise as probability distributions and a natural generalization to handle measure-valued data is to use the optimal transport metric. Due to non-negative Alexandrov curvature of the Wasserstein space, barycenters suffer from regularity and non-robustness issues. The peculiar behaviors of Wasserstein barycenters may make the centroid-based formulation fail to represent the within-cluster data points, while the more direct distance-based $K$-means approach and its semidefinite program (SDP) relaxation are capable of recovering the true cluster labels. In the special case of clustering Gaussian distributions, we show that the SDP relaxed Wasserstein $K$-means can achieve exact recovery given the clusters are well-separated under the $2$-Wasserstein metric. Our simulation and real data examples also demonstrate that distance-based $K$-means can achieve better classification performance over the standard centroid-based $K$-means for clustering probability distributions and images.
In biomechanics, geometries representing complicated organic structures are consistently segmented from sparse volumetric data or morphed from template geometries resulting in initial overclosure between adjacent geometries. In FEA, these overclosures result in numerical instability and inaccuracy as part of contact analysis. Several techniques exist to fix overclosures, but most suffer from several drawbacks. This work introduces a novel automated algorithm in an iterative process to remove overclosure and create a desired minimum gap for 2D and 3D finite element models. The RBF Network algorithm was introduced by its four major steps to remove the initial overclosure. Additionally, the algorithm was validated using two test cases against conventional nodal adjustment. The first case compared the ability of each algorithm to remove differing levels of overclosure between two deformable muscles and the effects on mesh quality. The second case used a non-deformable femur and deformable distal femoral cartilage geometry with initial overclosure to test both algorithms and observe the effects on the resulting contact FEA. The RBF Network in the first case study was successfully able to remove all overclosures. In the second case, the nodal adjustment method failed to create a usable FEA model, while the RBF Network had no such issue. This work proposed an algorithm to remove initial overclosures prior to FEA that has improved performance over conventional nodal adjustment, especially in complicated situations and those involving 3D elements. The work can be included in existing FEA modeling workflows to improve FEA results in situations involving sparse volumetric segmentation and mesh morphing. This algorithm has been implemented in MATLAB, and the source code is publicly available to download at the following GitHub repository: //github.com/thor-andreassen/femors
Edge computing has become a popular paradigm where services and applications are deployed at the network edge closer to the data sources. It provides applications with outstanding benefits, including reduced response latency and enhanced privacy protection. For emerging advanced applications, such as autonomous vehicles, industrial IoT, and metaverse, further research is needed. This is because such applications demand ultra-low latency, hyper-connectivity, and dynamic and reliable service provision, while existing approaches are inadequate to address the new challenges. Hence, we envision that the future edge computing is moving towards distributed intelligence, where heterogeneous edge nodes collaborate to provide services in large-scale and geo-distributed edge infrastructure. We thereby propose Edge-as-a-Service (EaaS) to enable distributed intelligence. EaaS jointly manages large-scale cross-node edge resources and facilitates edge autonomy, edge-to-edge collaboration, and resource elasticity. These features enable flexible deployment of services and ubiquitous computation and intelligence. We first give an overview of existing edge computing studies and discuss their limitations to articulate the motivation for proposing EaaS. Then, we describe the details of EaaS, including the physical architecture, proposed software framework, and benefits of EaaS. Various application scenarios, such as real-time video surveillance, smart building, and metaverse, are presented to illustrate the significance and potential of EaaS. Finally, we discuss several challenging issues of EaaS to inspire more research towards this new edge computing framework.
We study the problem of estimating an unknown parameter in a distributed and online manner. Existing work on distributed online learning typically either focuses on asymptotic analysis, or provides bounds on regret. However, these results may not directly translate into bounds on the error of the learned model after a finite number of time-steps. In this paper, we propose a distributed online estimation algorithm which enables each agent in a network to improve its estimation accuracy by communicating with neighbors. We provide non-asymptotic bounds on the estimation error, leveraging the statistical properties of the underlying model. Our analysis demonstrates a trade-off between estimation error and communication costs. Further, our analysis allows us to determine a time at which the communication can be stopped (due to the costs associated with communications), while meeting a desired estimation accuracy. We also provide a numerical example to validate our results.
Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.