亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ability to accurately capture and express emotions is a critical aspect of creating believable characters in video games and other forms of entertainment. Traditionally, this animation has been achieved with artistic effort or performance capture, both requiring costs in time and labor. More recently, audio-driven models have seen success, however, these often lack expressiveness in areas not correlated to the audio signal. In this paper, we present a novel approach to facial animation by taking existing animations and allowing for the modification of style characteristics. Specifically, we explore the use of a StarGAN to enable the conversion of 3D facial animations into different emotions and person-specific styles. We are able to maintain the lip-sync of the animations with this method thanks to the use of a novel viseme-preserving loss.

相關內容

Self-supervised masked image modeling has shown promising results on natural images. However, directly applying such methods to medical images remains challenging. This difficulty stems from the complexity and distinct characteristics of lesions compared to natural images, which impedes effective representation learning. Additionally, conventional high fixed masking ratios restrict reconstructing fine lesion details, limiting the scope of learnable information. To tackle these limitations, we propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP). Specifically, we design a Masked Patch Selection (MPS) strategy to identify and focus learning on patches containing lesions. Lesion regions are scarce yet critical, making their precise reconstruction vital. To reduce misclassification of lesion and background patches caused by unsupervised clustering in MPS, we introduce an Attention Reconstruction Loss (ARL) to focus on hard-to-reconstruct patches likely depicting lesions. We further propose a Category Consistency Loss (CCL) to refine patch categorization based on reconstruction difficulty, strengthening distinction between lesions and background. Moreover, we develop an Adaptive Masking Ratio (AMR) strategy that gradually increases the masking ratio to expand reconstructible information and improve learning. Extensive experiments on two medical segmentation datasets demonstrate AMLP's superior performance compared to existing self-supervised approaches. The proposed strategies effectively address limitations in applying masked modeling to medical images, tailored to capturing fine lesion details vital for segmentation tasks.

Story ideation is a critical part of the story-writing process. It is challenging to support computationally due to its exploratory and subjective nature. Tropes, which are recurring narrative elements across stories, are essential in stories as they shape the structure of narratives and our understanding of them. In this paper, we propose to use tropes as an intermediate representation of stories to approach story ideation. We present TaleStream, a canvas system that uses tropes as building blocks of stories while providing steerable suggestions of story ideas in the form of tropes. Our trope suggestion methods leverage data from the tvtropes.org wiki. We find that 97% of the time, trope suggestions generated by our methods provide better story ideation materials than random tropes. Our system evaluation suggests that TaleStream can support writers' creative flow and greatly facilitates story development. Tropes, as a rich lexicon of narratives with available examples, play a key role in TaleStream and hold promise for story-creation support systems.

Weakly Supervised Semantic Segmentation (WSSS) relying only on image-level supervision is a promising approach to deal with the need for Segmentation networks, especially for generating a large number of pixel-wise masks in a given dataset. However, most state-of-the-art image-level WSSS techniques lack an understanding of the geometric features embedded in the images since the network cannot derive any object boundary information from just image-level labels. We define a boundary here as the line separating an object and its background, or two different objects. To address this drawback, we are proposing our novel ReFit framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques in order to achieve fine-grained higher-accuracy segmentation masks. To achieve this, we investigate a state-of-the-art unsupervised segmentation network that can be used to construct a boundary map, which enables ReFit to predict object locations with sharper boundaries. By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging. The framework is open-source, to ensure that our results are reproducible, and accessible online at //github.com/bharathprabakaran/ReFit.

Code review is a fundamental process in software development that plays a critical role in ensuring code quality and reducing the likelihood of errors and bugs. However, code review might be complex, subjective, and time-consuming. Comment generation and code refinement are two key tasks of this process and their automation has traditionally been addressed separately in the literature using different approaches. In this paper, we propose a novel deep-learning architecture, DISCOREV, based on cross-task knowledge distillation that addresses these two tasks simultaneously. In our approach, the fine-tuning of the comment generation model is guided by the code refinement model. We implemented this guidance using two strategies, feedback-based learning objective and embedding alignment objective. We evaluated our approach based on cross-task knowledge distillation by comparing it to the state-of-the-art methods that are based on independent training and fine-tuning. Our results show that our approach generates better review comments as measured by the BLEU score.

In the past decade, many vulnerabilities were discovered in microarchitectures which yielded attack vectors and motivated the study of countermeasures. Further, architectural and physical imperfections in DRAMs led to the discovery of Rowhammer attacks which give an adversary power to introduce bit flips in a victim's memory space. Numerous studies analyzed Rowhammer and proposed techniques to prevent it altogether or to mitigate its effects. In this work, we push the boundary and show how Rowhammer can be further exploited to inject faults into stack variables and even register values in a victim's process. We achieve this by targeting the register value that is stored in the process's stack, which subsequently is flushed out into the memory, where it becomes vulnerable to Rowhammer. When the faulty value is restored into the register, it will end up used in subsequent iterations. The register value can be stored in the stack via latent function calls in the source or by actively triggering signal handlers. We demonstrate the power of the findings by applying the techniques to bypass SUDO and SSH authentication. We further outline how MySQL and other cryptographic libraries can be targeted with the new attack vector. There are a number of challenges this work overcomes with extensive experimentation before coming together to yield an end-to-end attack on an OpenSSL digital signature: achieving co-location with stack and register variables, with synchronization provided via a blocking window. We show that stack and registers are no longer safe from the Rowhammer attack.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

北京阿比特科技有限公司