Welcome to the sixth edition of the AI Index Report. This year, the report introduces more original data than any previous edition, including a new chapter on AI public opinion, a more thorough technical performance chapter, original analysis about large language and multimodal models, detailed trends in global AI legislation records, a study of the environmental impact of AI systems, and more. The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The report aims to be the world's most credible and authoritative source for data and insights about AI.
The notion of Las Vegas algorithm was introduced by Babai (1979) and may be defined in two ways: * In Babai's original definition, a randomized algorithm is called Las Vegas if it has finitely bounded running time and certifiable random failure. * Alternatively, in a widely accepted definition today, Las Vegas algorithms mean the zero-error randomized algorithms with random running time. The equivalence between the two definitions is straightforward. In particular, by repeatedly running the algorithm until no failure encountered, one can simulate the correct output of a successful running. We show that this can also be achieved for distributed local computation. Specifically, we show that in the LOCAL model, any Las Vegas algorithm that terminates in finite time with locally certifiable failures, can be converted to a zero-error Las Vegas algorithm, at a polylogarithmic cost in the time complexity, such that the resulting algorithm perfectly simulates the output of the original algorithm on the same instance conditioned on that the algorithm successfully returns without failure.
We introduce differentiable indirection -- a novel learned primitive that employs differentiable multi-scale lookup tables as an effective substitute for traditional compute and data operations across the graphics pipeline. We demonstrate its flexibility on a number of graphics tasks, i.e., geometric and image representation, texture mapping, shading, and radiance field representation. In all cases, differentiable indirection seamlessly integrates into existing architectures, trains rapidly, and yields both versatile and efficient results.
Quantum key distribution (QKD) was conceived by Charles Bennett and Gilles Brassard in December of 1984. In the ensuing 39 years QKD systems have been deployed around the world to provide secure encryption for terrestrial as well as satellite communication. In 2016 the National Institute of Standards and Technology (NIST) began a program to standardize a series of quantum resistant algorithms to replace our current encryption standards thereby protecting against future quantum computers breaking public key cryptography. This program is known as post quantum cryptography or PQC. One of the tenets of cybersecurity is to use an approach that simultaneously provides multiple protections known as defense-in-depth. This approach seeks to avoid single points of failure. The goal of this paper is to examine the suitability of a hybrid QKD / PQC defense-in-depth strategy. A focus of the paper will be to examine the sufficiency of initial QKD hardware authentication (entity source authentication) which is necessary to guard against man-in-the-middle attacks.
This volume contains the papers presented at the 21st International Overture Workshop, held on the 10th of March 2023. This event was the latest in a series of workshops around the Vienna Development Method (VDM), the open-source project Overture, and related tools and formalisms. VDM is one of the longest established formal methods for systems development. A lively community of researchers and practitioners has grown up in academia and industry has grown around the modelling languages (VDM-SL, VDM++, VDM-RT, CML) and tools (VDMTools, Overture, Crescendo, Symphony, the INTO-CPS chain, and ViennaTalk). Together, these provide a platform for work on modelling and analysis technology that includes static and dynamic analysis, test generation, execution support, and model checking. This workshop provided updates on the emerging technology of VDM/Overture, including collaboration infrastructure, collaborative modelling and co-simulation for Cyber-Physical Systems.
Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are still several challenges that must be covered in more detail. This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology. Specifically, the FRCSyn Challenge targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. The results achieved in the FRCSyn Challenge, together with the proposed benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
Thirty-six years after the first edition of IEEE standard 982.1, Measures of the Software Aspects of Dependability, the third edition focuses on the measurement of in-service software dependability. This article explains how this new point of view evolved and shaped the third edition's guidance for software dependability measurement.
We find that the best publicly available LLMs like GPT-4 and PaLM 2 currently perform poorly at basic text handling required of lawyers or paralegals, such as looking up the text at a line of a witness deposition or at a subsection of a contract. We introduce a benchmark to quantify this poor performance, which casts into doubt LLMs' current reliability as-is for legal practice. Finetuning for these tasks brings an older LLM to near-perfect performance on our test set and also raises performance on a related legal task. This stark result highlights the need for more domain expertise in LLM training.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.