亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a large-scale service system where incoming tasks have to be instantaneously dispatched to one out of many parallel server pools. The user-perceived performance degrades with the number of concurrent tasks and the dispatcher aims at maximizing the overall quality-of-service by balancing the load through a simple threshold policy. We demonstrate that such a policy is optimal on the fluid and diffusion scales, while only involving a small communication overhead, which is crucial for large-scale deployments. In order to set the threshold optimally, it is important, however, to learn the load of the system, which may be unknown. For that purpose, we design a control rule for tuning the threshold in an online manner. We derive conditions which guarantee that this adaptive threshold settles at the optimal value, along with estimates for the time until this happens. In addition, we provide numerical experiments which support the theoretical results and further indicate that our policy copes effectively with time-varying demand patterns.

相關內容

Adversarial contrastive learning (ACL) does not require expensive data annotations but outputs a robust representation that withstands adversarial attacks and also generalizes to a wide range of downstream tasks. However, ACL needs tremendous running time to generate the adversarial variants of all training data, which limits its scalability to large datasets. To speed up ACL, this paper proposes a robustness-aware coreset selection (RCS) method. RCS does not require label information and searches for an informative subset that minimizes a representational divergence, which is the distance of the representation between natural data and their virtual adversarial variants. The vanilla solution of RCS via traversing all possible subsets is computationally prohibitive. Therefore, we theoretically transform RCS into a surrogate problem of submodular maximization, of which the greedy search is an efficient solution with an optimality guarantee for the original problem. Empirically, our comprehensive results corroborate that RCS can speed up ACL by a large margin without significantly hurting the robustness transferability. Notably, to the best of our knowledge, we are the first to conduct ACL efficiently on the large-scale ImageNet-1K dataset to obtain an effective robust representation via RCS. Our source code is at //github.com/GodXuxilie/Efficient_ACL_via_RCS.

A key element of computer-assisted surgery systems is phase recognition of surgical videos. Existing phase recognition algorithms require frame-wise annotation of a large number of videos, which is time and money consuming. In this work we join concepts of graph segmentation with self-supervised learning to derive a random-walk solution for per-frame phase prediction. Furthermore, we utilize within our method two forms of weak supervision: sparse timestamps or few-shot learning. The proposed algorithm enjoys low complexity and can operate in lowdata regimes. We validate our method by running experiments with the public Cholec80 dataset of laparoscopic cholecystectomy videos, demonstrating promising performance in multiple setups.

Spatio-temporal graph neural networks (STGNNs) have gained popularity as a powerful tool for effectively modeling spatio-temporal dependencies in diverse real-world urban applications, including intelligent transportation and public safety. However, the black-box nature of STGNNs limits their interpretability, hindering their application in scenarios related to urban resource allocation and policy formulation. To bridge this gap, we propose an Explainable Spatio-Temporal Graph Neural Networks (STExplainer) framework that enhances STGNNs with inherent explainability, enabling them to provide accurate predictions and faithful explanations simultaneously. Our framework integrates a unified spatio-temporal graph attention network with a positional information fusion layer as the STG encoder and decoder, respectively. Furthermore, we propose a structure distillation approach based on the Graph Information Bottleneck (GIB) principle with an explainable objective, which is instantiated by the STG encoder and decoder. Through extensive experiments, we demonstrate that our STExplainer outperforms state-of-the-art baselines in terms of predictive accuracy and explainability metrics (i.e., sparsity and fidelity) on traffic and crime prediction tasks. Furthermore, our model exhibits superior representation ability in alleviating data missing and sparsity issues. The implementation code is available at: //github.com/HKUDS/STExplainer.

Consider a scenario where we have access to train data with both covariates and outcomes while test data only contains covariates. In this scenario, our primary aim is to predict the missing outcomes of the test data. With this objective in mind, we train parametric regression models under a covariate shift, where covariate distributions are different between the train and test data. For this problem, existing studies have proposed covariate shift adaptation via importance weighting using the density ratio. This approach averages the train data losses, each weighted by an estimated ratio of the covariate densities between the train and test data, to approximate the test-data risk. Although it allows us to obtain a test-data risk minimizer, its performance heavily relies on the accuracy of the density ratio estimation. Moreover, even if the density ratio can be consistently estimated, the estimation errors of the density ratio also yield bias in the estimators of the regression model's parameters of interest. To mitigate these challenges, we introduce a doubly robust estimator for covariate shift adaptation via importance weighting, which incorporates an additional estimator for the regression function. Leveraging double machine learning techniques, our estimator reduces the bias arising from the density ratio estimation errors. We demonstrate the asymptotic distribution of the regression parameter estimator. Notably, our estimator remains consistent if either the density ratio estimator or the regression function is consistent, showcasing its robustness against potential errors in density ratio estimation. Finally, we confirm the soundness of our proposed method via simulation studies.

As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays.

Consider a scenario where we have access to train data with both covariates and outcomes while test data only contains covariates. In this scenario, our primary aim is to predict the missing outcomes of the test data. With this objective in mind, we train parametric regression models under a covariate shift, where covariate distributions are different between the train and test data. For this problem, existing studies have proposed covariate shift adaptation via importance weighting using the density ratio. This approach averages the train data losses, each weighted by an estimated ratio of the covariate densities between the train and test data, to approximate the test-data risk. Although it allows us to obtain a test-data risk minimizer, its performance heavily relies on the accuracy of the density ratio estimation. Moreover, even if the density ratio can be consistently estimated, the estimation errors of the density ratio also yield bias in the estimators of the regression model's parameters of interest. To mitigate these challenges, we introduce a doubly robust estimator for covariate shift adaptation via importance weighting, which incorporates an additional estimator for the regression function. Leveraging double machine learning techniques, our estimator reduces the bias arising from the density ratio estimation errors. We demonstrate the asymptotic distribution of the regression parameter estimator. Notably, our estimator remains consistent if either the density ratio estimator or the regression function is consistent, showcasing its robustness against potential errors in density ratio estimation. Finally, we confirm the soundness of our proposed method via simulation studies.

We describe a class of tasks called decision-oriented dialogues, in which AI assistants must collaborate with one or more humans via natural language to help them make complex decisions. We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends. In each of these settings, AI assistants and users have disparate abilities that they must combine to arrive at the best decision: assistants can access and process large amounts of information, while users have preferences and constraints external to the system. For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach. Using these environments, we collect human-human dialogues with humans playing the role of assistant. To compare how current AI assistants communicate in these settings, we present baselines using large language models in self-play. Finally, we highlight a number of challenges models face in decision-oriented dialogues, ranging from efficient communication to reasoning and optimization, and release our environments as a testbed for future modeling work.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司