亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A key element of computer-assisted surgery systems is phase recognition of surgical videos. Existing phase recognition algorithms require frame-wise annotation of a large number of videos, which is time and money consuming. In this work we join concepts of graph segmentation with self-supervised learning to derive a random-walk solution for per-frame phase prediction. Furthermore, we utilize within our method two forms of weak supervision: sparse timestamps or few-shot learning. The proposed algorithm enjoys low complexity and can operate in lowdata regimes. We validate our method by running experiments with the public Cholec80 dataset of laparoscopic cholecystectomy videos, demonstrating promising performance in multiple setups.

相關內容

Leveraging machine-learning methods to predict outcomes on some unlabeled datasets and then using these pseudo-outcomes in subsequent statistical inference is common in modern data analysis. Inference in this setting is often called post-prediction inference. We propose a novel, assumption-lean framework for inference under post-prediction setting, called \emph{Prediction De-Correlated inference} (PDC). Our approach can automatically adapt to any black-box machine-learning model and consistently outperforms supervised methods. The PDC framework also offers easy extensibility for accommodating multiple predictive models. Both numerical results and real-world data analysis support our theoretical results.

In conventional multiple-input multiple-output (MIMO) communication systems, the positions of antennas are fixed. To take full advantage of spatial degrees of freedom, a new technology called fluid antenna (FA) is proposed to obtain higher achievable rate and diversity gain. Most existing works on FA exploit instantaneous channel state information (CSI). However, in FA-assisted systems, it is difficult to obtain instantaneous CSI since changes in the antenna position will lead to channel variation. In this letter, we investigate a FA-assisted MIMO system using relatively slow-varying statistical CSI. Specifically, in the criterion of rate maximization, we propose an algorithmic framework for transmit precoding and transmit/receive FAs position designs with statistical CSI. Simulation results show that our proposed algorithm in FA-assisted systems significantly outperforms baselines in terms of rate performance.

While neural rendering has led to impressive advances in scene reconstruction and novel view synthesis, it relies heavily on accurately pre-computed camera poses. To relax this constraint, multiple efforts have been made to train Neural Radiance Fields (NeRFs) without pre-processed camera poses. However, the implicit representations of NeRFs provide extra challenges to optimize the 3D structure and camera poses at the same time. On the other hand, the recently proposed 3D Gaussian Splatting provides new opportunities given its explicit point cloud representations. This paper leverages both the explicit geometric representation and the continuity of the input video stream to perform novel view synthesis without any SfM preprocessing. We process the input frames in a sequential manner and progressively grow the 3D Gaussians set by taking one input frame at a time, without the need to pre-compute the camera poses. Our method significantly improves over previous approaches in view synthesis and camera pose estimation under large motion changes. Our project page is //oasisyang.github.io/colmap-free-3dgs

The Gromov-Wasserstein (GW) distance, rooted in optimal transport (OT) theory, provides a natural framework for aligning heterogeneous datasets. Alas, statistical estimation of the GW distance suffers from the curse of dimensionality and its exact computation is NP hard. To circumvent these issues, entropic regularization has emerged as a remedy that enables parametric estimation rates via plug-in and efficient computation using Sinkhorn iterations. Motivated by further scaling up entropic GW (EGW) alignment methods to data dimensions and sample sizes that appear in modern machine learning applications, we propose a novel neural estimation approach. Our estimator parametrizes a minimax semi-dual representation of the EGW distance by a neural network, approximates expectations by sample means, and optimizes the resulting empirical objective over parameter space. We establish non-asymptotic error bounds on the EGW neural estimator of the alignment cost and optimal plan. Our bounds characterize the effective error in terms of neural network (NN) size and the number of samples, revealing optimal scaling laws that guarantee parametric convergence. The bounds hold for compactly supported distributions, and imply that the proposed estimator is minimax-rate optimal over that class. Numerical experiments validating our theory are also provided.

Climate downscaling is a crucial technique within climate research, serving to project low-resolution (LR) climate data to higher resolutions (HR). Previous research has demonstrated the effectiveness of deep learning for downscaling tasks. However, most deep learning models for climate downscaling may not perform optimally for high scaling factors (i.e., 4x, 8x) due to their limited ability to capture the intricate details required for generating HR climate data. Furthermore, climate data behaves differently from image data, necessitating a nuanced approach when employing deep generative models. In response to these challenges, this paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale. We employ a denoising diffusion probabilistic model (DDPM) conditioned on multiple LR climate variables. The proposed model is evaluated using precipitation data from the Community Earth System Model (CESM) v1.2.2 simulation. Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.

We report a novel approach for the efficient computation of solutions of a broad class of large-scale systems of non-linear ordinary differential equations, describing aggregation kinetics. The method is based on a new take on the dimensionality reduction for this class of equations which can be naturally implemented by a cascade of small feed-forward artificial neural networks. We show that this cascade, of otherwise static models, is capable of predicting solutions of the original large-scale system over large intervals of time, using the information about the solution computed over much smaller intervals. The computational cost of the method depends very mildly on the temporal horizon, which is a major improvement over the current state-of-the-art methods, whose complexity increases super-linearly with the system's size and proportionally to the simulation time. In cases when prior information about the values of solutions over a relatively small interval of time is already available, the method's computational complexity does not depend explicitly on the system's size. The successful application of the new method is illustrated for spatially-homogeneous systems, with a source of monomers, for a number of the most representative reaction rates kernels.

Ising machines have emerged as a promising solution for rapidly solving NP-complete combinatorial optimization problems, surpassing the capabilities of traditional computing methods. By efficiently determining the ground state of the Hamiltonian during the annealing process, Ising machines can effectively complement CPUs in tackling optimization challenges. To realize these Ising machines, a bi-stable oscillator is essential to emulate the atomic spins and interactions of the Ising model. This study introduces a Josephson parametric oscillator (JPO)-based tile structure, serving as a fundamental unit for scalable superconductor-based Ising machines. Leveraging the bi-stable nature of JPOs, which are superconductor-based oscillators, the proposed machine can operate at frequencies of 7.5GHz while consuming significantly less power (by three orders of magnitude) than CMOS-based systems. Furthermore, the compatibility of the proposed tile structure with the Lechner-Hauke-Zoller (LHZ) architecture ensures its viability for large-scale integration. We conducted simulations of the tile in a noisy environment to validate its functionality. We verified its operational characteristics by comparing the results with the analytical solution of its Hamiltonian model. This verification demonstrates the feasibility and effectiveness of the JPO-based tile in implementing Ising machines, opening new avenues for efficient and scalable combinatorial optimization in quantum computing.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司